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Abstract 

In numerous solution-processed thin films, a complex morphology resulting from liquid-liquid 

phase separation (LLPS) or from polycrystallization arises during the drying or subsequent 

processing steps. The morphology has a strong influence on the performance of the final device 

but unfortunately the process-structure relationship is often poorly and only qualitatively 

understood. This is because many different physical mechanisms (miscibility, evaporation, 

crystallization, diffusion, advection) are active at potentially different time scales, and because 

the kinetics plays a crucial role: the morphology develops until it is kinetically quenched far 

from equilibrium. In order to unravel the various possible structure formation pathways, we 

propose a unified theoretical framework that takes into account all these physical phenomena. 

This phase-field simulation tool is based on the Cahn-Hilliard equations for diffusion and the 

Allen-Cahn equation for crystallization and evaporation, which are coupled to the equations for 

the dynamics of the fluid. We discuss and verify the behavior of the coupled model based on 

simple test cases. Furthermore, we illustrate how this framework allows to investigate the 

morphology formation in a drying film undergoing evaporation-induced LLPS and 

crystallization, which is typically a situation encountered, e.g., in organic photovoltaics 

applications.  
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1. Introduction 

In the field of renewable energies, organic electronics or membrane technologies, devices 

containing thin films or a stack of thin layers are very common. Solution processing is a method 

of choice for the fabrication of many of these devices. This processing route is often simple, 

low-energy demanding, low-cost and scalable, which makes it very attractive especially in an 

industrial context. Therefore, successfully producing well-performing devices with solution 

processing can be a fundamental milestone on the way to the market for future technologies. 

Typically, a thin film consists of one or several materials dissolved in a solvent or a solvent 

blend. The mixture is deposited on a substrate by various methods such as spin coating, doctor 

blading, slot-die coating or inkjet printing. [1] Then, the film is dried until the solvents fully 

evaporate. Finally, the dry film might undergo additional processing steps, for instance thermal 

annealing or solvent vapor annealing. The performance of the fabricated device depends not 

only on the properties of the selected materials, but also on the morphology of the dry thin films. 

This morphology develops during the fabrication process, especially during the drying phase. 

Therefore, it is highly desirable to understand the physical processes driving the morphology 

formation in order to gain control over the process-structure relationship and to propose 

improved processing routes for better device performance. 

Solution-processed organic photovoltaics (OPV) is a very good example of such a system where 

the process parameters are of highest importance for device performance. The organic 

photoactive layers are typically 100-300nm thick and made of two materials, one electron donor 

(frequently a polymer material) and one electron acceptor. The current understanding of the 

structure-property relationship can be summarized as follows: [2] [3] [4] [5] the desired structure is 

a so-called ‘bulk heterojunction’, a co-continuous nanostructure of separated, relatively pure 

donor and acceptor regions with a significant crystallinity (typical crystal sizes of 10nm), and a 

mixed phase in between. This allows for high exciton separation efficiency, low recombination 

rates, high charge carrier mobilities and pathways to the electrodes for electrons and holes. The 

bulk heterojunction concept has led to very successful results over the past two decades, the 

best solar cells efficiencies now reaching 16-18%. [6] [7] [8] [9]. By contrast, the process-structure 

relationship is poorly and only qualitatively understood since the direct experimental 

assessment of the arising morphology is difficult. The general picture is the following: [3] [10] [11] 

[12] [13] starting from a very dilute, mixed wet film after deposition, the concentration increase 

upon drying leads to the onset of crystallization of one or both materials and/or liquid-liquid 

phase separation (LLPS). Whether these phase transitions occur and in which order of 
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appearance depends on the one hand on the thermodynamic properties of the chosen material 

system. On the other hand, the kinetic properties of the drying mixture strongly influence the 

final morphology. This is because they vary over orders of magnitude upon drying, especially 

when polymer materials are involved, so that the system is kinetically quenched at a point far 

from its thermodynamic equilibrium. The available time before this quench typically 

determines the domain sizes, topology and crystallinity of the bulk heterojunction. Therefore, 

the final morphology is strongly influenced by the fabrication process. It can be optimized by 

changing parameters such as the temperature, the choice of the solvent, addition of an 

antisolvent, or post-processing steps allowing further evolution of the film (thermal annealing, 

solvent annealing). [3] [5] [14] [15] [16] Moreover, since the film morphology is not at equilibrium, 

it might in principle evolve during operation of the device and contribute to lifetime limitations 

or loss of efficiency. [17] 

The question to be solved to understand the morphology formation of such systems is a non-

equilibrium thermodynamics problem. The evolution of a mixture with variable composition 

(due to solvent removal) towards its thermodynamic equilibrium should be described depending 

on time, until the evolution becomes too slow and no noticeable changes can be observed, even 

if this ‘final’ state is still far from equilibrium. The objective of this paper is to present a 

simulation framework which is able to describe such a situation. Considering the situation for 

solution-processed OPV, the following features and physical processes are considered: 

 The framework should be able to handle multicomponent mixtures with very different 

materials. For OPV, a mixture of three materials (polymer donor, small molecule 

acceptor and solvent) is the minimum requested, and a mixture of four materials (use of 

an antisolvent or a third photoactive material) is after all quite common. 

 The thermodynamics should take into account the liquid-vapor phase transition for 

solvents (for evaporation in the case of drying or absorption by the film for solvent vapor 

annealing), the liquid-solid phase transition for all other materials (crystallization) 

including the handling of polycrystalline structures, and the miscibility of the mixture 

(LLPS by spinodal decomposition or nucleation and growth). 

 The mass transport is expected to occur either by diffusion, by advection or by both, so 

that both processes should be considered. 

 The kinetic properties (diffusion coefficients, crystallization rate, viscosities) are crucial 

for the proper description of the morphology formation. They have to be strongly 

composition-dependent. 
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 Even if it is not a critical problem for OPV, drying polymer mixtures or crystallizing 

systems (like solution-processed photoactive perovskite layers) often lead to rough dry 

structures featuring even sometimes uncovered substrate regions, which might 

dramatically hamper the device quality. The flexibility of the film surface and 

occurrence of dewetting processes should be handled consequently. 

 The various rate processes (diffusion, fluid flows, evaporation, nucleation and growth, 

phase coarsening) occur with time scales that not only vary with composition, but also 

often differ by orders of magnitude (consider for instance the diffusion time over 100nm 

in a solvent, which is roughly 10 microseconds, with evaporation times usually 

exceeding one second). This has to be possible in the framework to perform simulations 

with realistic parameters and to obtain satisfactory agreement with experimental 

measurements. 

These requirements are inspired by the typical example of OPV, but obviously they are generic 

and applicable to many other similar material systems. Thus, the framework presented in this 

paper is not restricted to OPV, and it can be used for other applications where part or all of the 

features described above have to be taken into account. Similarly, it is not restricted to the 

simulation of drying films but can also be used for instance for solvent vapor annealing, thermal 

annealing or morphology evolution during device lifetime. 

It has been highlighted that the kinetic evolution is of highest importance for the structure 

determination. Together with the considered time scales and length scales of the structures 

(typically from a few nanometers to more than a micrometer wet film thickness for OPV), this 

makes small-scale simulation methods not well suited for this problem, even if very relevant 

results have been obtained by molecular dynamics, dissipative particle dynamics or self-

consistent field theory. [18] [19] [20] [21] Mesoscale or continuum mechanics methods are more 

appropriate in terms of reachable time and lengths scales. Monte Carlo based lattice models [22] 

or the Lattice Boltzmann method [23] [24] [25] [26] [27] have been successfully applied to the 

simulation of phase separating mixtures, crystallization and evaporation. In addition, the phase-

field (PF) method is a very attractive alternative and the most widely used method to deal with 

these topics. It is a well-established, versatile technique to handle interfacial problems with 

diffuse interfaces, starting with the thermodynamic description of the mixture through a free 

energy functional, so that phase transitions are taken into account in a very natural way. It is 

not the objective of this paper to propose an exhaustive review of the numerous scientific 

questions PF methods have been applied to, and the reader is referred to the existing literature 
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for this purpose. [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] Different parts of the requirements 

described above have already been investigated with PF simulations for a long time and we will 

give in the following some striking examples picked from the available literature. The 

description of pure LLPS or pure crystallization goes back to the early work of Allen, Cahn and 

Hilliard. [39] [40] [41] More recently, PF simulations have been used extensively to investigate 

spinodal decomposition in multicomponent systems, [42] [43] [44] [45] boiling and evaporation, [46] 

[47] [48] [49] crystallization in liquid mixtures or solid blends, [50] [51] [52] [53] [54] [55] [56] [57] interplay 

between crystallization and LLPS, [58] [59] [60] evaporation induced LLPS [61] [62] [63] [64] [65] [66] 

[67] [68] [69] or evaporation induced crystallization [70]. The most relevant work to the problem 

handled in the current paper has probably been published by Saylor and Kim, who investigated 

LLPS and crystallization in evaporating polymer films for drug delivery applications. [71] [72] [73] 

[74] The coupling to fluid dynamics has been investigated and used by many authors. [75] [76] [77] 

[78] [79] [80] [81] [82] [83] [84] [85] [86] [87] 

However, to the best of our knowledge, no PF framework that meets all of the specifications 

listed above has been proposed so far. Recently, we developed on the one hand a PF framework 

for the investigation of miscible or immiscible multicomponent crystallizing mixtures. [88] On 

the other hand, we proposed a new general PF framework for the description of evaporating 

liquid mixtures taking into account surface deformation, [89] which we modified and improved 

in order to better match theoretical and experimental results. [90] In the current paper, we now 

couple and extend these models, in particular taking into account thermal fluctuations and 

coupling them to the dynamics of the fluids, finally building a general framework that fulfills 

all the requirement detailed above. This enables us to investigate the morphology formation of 

multicomponent mixtures upon drying, even if the materials are immiscible and/or crystalline. 

The model equations are given in the following section (section 2). Then, we discuss the 

numerical implementation (section 3) and present benchmarks and simple test cases (section 4). 

We present simulations of structure evolution upon drying using the full coupled model (section 

5) and finally discuss our results and possible perspectives (section 6). 

2. Model Equations 

2.1. Free energy functional 

The phase-field equations described in this paper result from the coupling of the models 

reported in our previous work, [88] [90] and the reader is referred to these papers for more details. 
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The simulated mixture is composed of 𝑛 fluids which can have a liquid and a vapor phase. 

Among them, 𝑛𝑐𝑟𝑦𝑠𝑡  materials are able to crystallize. The composition of the system is 

described at any point in time and space by the respective volume fractions of these materials 

𝜑𝑖. The phase state of each crystalline material is characterized by 𝑛𝑐𝑟𝑦𝑠𝑡 order parameters 𝜙𝑘 

which vary from 0 in the liquid/amorphous phase to 1 in the solid/crystal phase. Additionally, 

for each crystalline material, one marker field 𝜃𝑘  allows for identification of the distinct 

crystallites. The value of 𝜃𝑘  is defined only where the crystals are present, and remains 

undefined in the liquid/amorphous or in the gas phase (see more details below). In the case 

where evaporation plays a role, the simulation domain includes not only the condensed phase, 

but also part of the vapor phase. 𝑛𝑠𝑜𝑙𝑣 materials are solvents that can evaporate from the mixture 

and go into the vapor phase, which is nevertheless mainly composed of a further material (which 

will be called the ‘air’). The solvents progressively escape from the simulation box and are 

replaced by the air. [90] The transition between the drying mixture and the gas phase is tracked 

with a single order parameter 𝜙𝑣𝑎𝑝 which varies from 0 in the condensed phase to 1 in the vapor 

phase. We start writing the total free energy of the system as 

𝐺𝑡𝑜𝑡 = ∫ (𝛥𝐺𝑉
𝑙𝑜𝑐 + 𝛥𝐺𝑉

𝑛𝑜𝑛𝑙𝑜𝑐)𝑑𝑉 
𝑉

 (1) 

where 𝑉 denotes volume of the system. 𝛥𝐺𝑉
𝑙𝑜𝑐 is the local free energy density and 𝛥𝐺𝑉

𝑛𝑜𝑛𝑙𝑜𝑐 the 

non-local contribution due to the field gradients. The local part of the free energy is defined as 

𝛥𝐺𝑉
𝑙𝑜𝑐({𝜑𝑖}, {𝜙𝑘}, {𝜃𝑘}, 𝜙𝑣𝑎𝑝) =

   (1 − 𝑝(𝜙𝑣𝑎𝑝 , 1)) 𝛥𝐺𝑉
𝑐𝑜𝑛𝑑({𝜑𝑖}, {𝜙𝑘})

+            𝑝(𝜙𝑣𝑎𝑝, 1)𝛥𝐺𝑉
𝑣𝑎𝑝({𝜑𝑖})

+                                𝛥𝐺𝑉
𝑐𝑟𝑦𝑠𝑡𝑣𝑎𝑝

({𝜙𝑘}, 𝜙𝑣𝑎𝑝)

+                                𝛥𝐺𝑉
𝑛𝑢𝑚({𝜑𝑖})

 (2) 

The first term on the right-hand side of Equation 2 stands for the change of the free energy 

density in the condensed phase. It describes the mixing and crystallization properties of the 

mixtures: 
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𝛥𝐺𝑉
𝑐𝑜𝑛𝑑({𝜑𝑖}, {𝜙𝑘}) =

∑ 𝜌𝑘𝜑𝑘
𝛾𝑚(𝑔(𝜙𝑘, 𝜉0,𝑘)𝑊𝑘 + 𝑝(𝜙𝑘, 𝜉0,𝑘)Δ𝐺𝑉,𝑘

𝑐𝑟𝑦𝑠𝑡
)

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1

+
𝑅𝑇

𝑣0

(

 
 
 
 
 
 
 

∑
𝜑𝑖𝑙𝑛𝜑𝑖
𝑁𝑖

𝑛

𝑖=1

+∑∑𝜑𝑖𝜑𝑗𝜒𝑖𝑗,𝑙𝑙

𝑛

𝑗>𝑖

𝑛

𝑖=1

+ ∑ ∑𝜙𝑘
2𝜑𝑘𝜑𝑗𝜒𝑘𝑗,𝑠𝑙

𝑛

𝑗≠𝑘

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1

+ ∑ ∑ 𝜙𝑗𝜙𝑘𝜑𝑘𝜑𝑗𝜒𝑘𝑗,𝑠𝑠

𝑛𝑐𝑟𝑦𝑠𝑡

𝑗≠𝑘

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1 )

 
 
 
 
 
 
 

 (3) 

The first term on the RHS of Equation 3 represents the free energy density variation upon 

crystallization, where 𝑔(𝜙, 𝜉) = 𝜙2(𝜙 − 𝜉)2  and 𝑝(𝜙, 𝜉) = 𝜙2(3𝜉 − 2𝜙)/𝜉2  are 

interpolation functions classically used in phase-field simulations of crystallization processes. 

[30] [33] 𝜌𝑘 is the density of the material k and Δ𝐺𝑉,𝑘
𝑐𝑟𝑦𝑠𝑡

= 𝐿𝑘 (
𝑇

𝑇𝑚,𝑘
− 1) its free energy density of 

crystallization, calculated from its enthalpy of fusion 𝐿𝑘  and its melting temperature 𝑇𝑚,𝑘 , 

respectively. 𝜉0,𝑘 is the value of the order parameter for which, in a pure material, the free 

energy density of crystallization is minimized and represents the maximum crystallinity of the 

material. The energy barrier to be overcome during the liquid-solid (or amorphous/crystalline) 

phase transition is taken into account with the help of the double-well function 𝑔, and its height 

is determined by the parameter 𝑊𝑘 . In a mixture, the free energy density variation upon 

crystallization is proportional to the volume fraction to the power 𝛾𝑚. 𝛾𝑚 is classically assumed 

to be equal to 1 but we expect other dependencies to be possible. For instance, assuming that 

the energy gain upon crystallization corresponds to a decrease of the pairwise interaction energy 

between nearest neighbors would lead to 𝛾𝑚 = 2. 

The term in the brackets of Equation 3 refers to the free energy of mixing, basing on the concepts 

of the Flory-Huggins theory. [91] There, 𝑅 is the gas constant, 𝑇 the temperature, 𝑣0 the molar 

volume of the lattice site as defined in the Flory-Huggins theory. 𝑁𝑖 is the molar size of the 

material 𝑖 in terms of units of the lattice site volume, so that its molar volume is 𝑣i = 𝑁i𝑣0. The 

𝜑𝑖𝑙𝑛𝜑𝑖  part is the ideal mixing term, while the double-sum terms represent the enthalpic 

interactions between the respective materials. The first double-sum, corresponding to the liquid-

liquid (or amorphous/amorphous) interactions, is the usual contribution initially proposed by 

Flory and Huggins, 𝜒𝑖𝑗,𝑙𝑙  being the interaction parameter between the amorphous phases of 

materials i and j. The second and third double-sums are a generalization to multicomponent 

mixtures [88] of the extension of the Flory-Huggins theory to crystalline materials initially 
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proposed by Matkar and Kyu for binary systems [92] [93]. They stand for the interactions between 

the liquid/amorphous phase of material j and the solid/crystalline phase of material k (with 

interaction parameter 𝜒𝑘𝑗,𝑠𝑙 ), and for the solid-solid (crystal/crystal) interactions (with 

interaction parameter 𝜒𝑘𝑗,𝑠𝑠), respectively. 

The second term on the right-hand side of Equation 2 stands for the free energy of the gas phase. 

[90] Here, for simplicity, the mixture is assumed to be ideal with gases of the same molecular 

size, so that the local free energy contribution reads  

𝛥𝐺𝑉
𝑣𝑎𝑝({𝜑𝑖}) =

𝑅𝑇

𝑣0
∑𝜑𝑖𝑙𝑛 (

𝜑𝑖
𝜑𝑠𝑎𝑡,𝑖

)

𝑛

𝑖=1

 (4) 

In the equation above, 𝜑𝑠𝑎𝑡,𝑖 = 𝑃𝑠𝑎𝑡,𝑖/𝑃0 and 𝜑𝑖 = 𝑃𝑖/𝑃0, where 𝑃𝑠𝑎𝑡,𝑖 is the vapor pressure of 

the fluid i, 𝑃𝑖  its partial pressure in the gas phase and 𝑃0 a reference pressure. The local free 

energy is interpolated at the condensed-gas phase interface between 𝛥𝐺𝑉
𝑐𝑜𝑛𝑑 and 𝛥𝐺𝑉

𝑣𝑎𝑝
 using 

again the smooth function 𝑝. 

The third term in on the right-hand side of Equation 2 is an interaction term between the gas 

phase and the crystals and prevents the overlapping of the order parameters of the crystals with 

the one of the gas phase: 

𝛥𝐺𝑉
𝑐𝑟𝑦𝑠𝑡𝑣𝑎𝑝

({𝜙𝑘}, 𝜙𝑣𝑎𝑝) = ∑ 𝐸𝑘(𝜑𝑘, 𝜙𝑘) (
𝜙𝑘
𝜉0,𝑘

)

𝛾𝑐

𝜙𝑣𝑎𝑝
𝛾𝑣

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1

 (5) 

Here, 𝐸𝑘(𝜑𝑘, 𝜙𝑘) is the interaction energy which will be discussed in more details below, and 

𝛾𝑐  and 𝛾𝑣  are exponents that are classically equal to 1 or 2 in multiple-field phase-field 

modelling. [33] [31] 

The last local term of the free energy functional is a purely numerical contribution introduced 

for stability purposes. [71] It prevents the volume fractions values from leaving the desired, 

physical ]0,1[ interval even when the thermodynamic properties of the mixture lead to the 

formation of very pure phases. This numerical contribution reads as: 

𝛥𝐺𝑉
𝑛𝑢𝑚({𝜑𝑖}) =∑

𝛽

𝜑𝑖
𝛾𝑏

𝑛

𝑖=1

 (6) 

𝛽 and 𝛾𝑏 are numerical coefficients. 𝛽 is chosen as small as possible in order to grant numerical 

stability, without significantly modifying the physical behavior of the simulation. 

The non-local contribution of the free energy represents the contribution of surface tension, 

which originates from volume fraction gradients and from liquid-solid and liquid-gas phase 

changes: 
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𝛥𝐺𝑉
𝑛𝑜𝑛𝑙𝑜𝑐({𝜑𝑖}, {𝛷𝑘}, {𝜃𝑘}, 𝜙𝑣𝑎𝑝)

=

     ∑
𝜅𝑖
2
(𝜵𝜑𝑖)

2

𝑛

𝑖=1

+ ∑ (
𝜀𝑘
2

2
(𝜵𝛷𝑘)

2 + 𝑝(𝛷𝑘, 𝜉0,𝑘)
𝜋𝜀𝑔,𝑘

2
|𝜵|𝛿𝐷(𝜵𝜃𝑘))

𝑛𝑐𝑟𝑦𝑠𝑡

𝑖=1

+
𝜀𝑣𝑎𝑝

2

2
(𝜵𝜙𝑣𝑎𝑝)

2

 
(7) 

𝜅𝑖 is the surface tension parameter for the concentration gradient of material i. Although 𝜅𝑖 is 

expected to depend on the composition in the case of polymer materials, [94] it is assumed to be 

constant in this work for simplicity. 𝜀𝑘 are the surface tension parameters for the gradient of the 

order parameter of material k, and represent the contribution to the surface tension of the liquid-

solid phase state variation. 𝜀𝑔,𝑘 are the surface tension parameters for the marker value gradients 

of material k. Following the ideas proposed during the development of the orientation-field 

phase field (OFPF) model, [51] [95] [54], the corresponding term in Equation 7 stands for the 

orientation mismatch energy between different single crystals of a given material and is 

responsible for impingement of the crystallites. As stated by the delta function 𝛿𝐷, it is defined 

only where there is a defined marker value jump, namely at the boundaries between two 

different crystallites. Note that this contribution is the same for all grain boundaries of a given 

material k. This is a simplification as compared to OFPF models, which leads to the fact that 

separate crystallites never merge in our framework. Finally, 𝜀𝑣𝑎𝑝  is the surface tension 

parameters for the gradient of the order parameter representing the condensed-gas phase 

transition. 

2.2. Kinetic equations: volume fractions 

Using the free energy functional detailed above, we can define the exchange chemical potential 

density, for all fluids from 1 to 𝑛 − 1 as 

𝜇𝑉,𝑗
𝑔𝑒𝑛

− 𝜇𝑉,𝑛
𝑔𝑒𝑛

=
𝛿∆𝐺𝑉
𝛿𝜑𝑗

−
𝛿∆𝐺𝑉
𝛿𝜑𝑛

=
𝜕∆𝐺𝑉
𝜕𝜑𝑗

−
𝜕∆𝐺𝑉
𝜕𝜑𝑛

− (𝛻 (
𝜕∆𝐺𝑉

𝜕(𝜵𝜑𝑗)
) − 𝛻 (

𝜕∆𝐺𝑉
𝜕(𝜵𝜑𝑛)

)) (8) 

The evolution of the volume fraction fields considering purely diffusive motion is the so-called 

Cahn-Hilliard equation, proposed by Cahn and Hilliard for binary mixtures [39] [40] and 

generalized later for multicomponent mixtures. [44] [42] When thermal fluctuations are taken into 

account, this equation is known as the Cahn-Hilliard-Cook equation. [96] In this work, the phase-
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field equations are coupled to the dynamics of the fluids (see below), so that we use the 

advective Cahn-Hilliard-Cook equation for the 𝑖 = 1…𝑛 − 1 materials: 

𝜕𝜑𝑖
𝜕𝑡

+ 𝒗𝛁𝜑𝑖 =
𝑣0
𝑅𝑇

𝛻 [∑𝛬𝑖𝑗𝜵(𝜇𝑉,𝑗
𝑔𝑒𝑛

− 𝜇𝑉,𝑛
𝑔𝑒𝑛
)

𝑛−1

𝑗=1

] + 𝜎𝐶𝐻𝜁𝐶𝐻
𝑖 (9) 

This equation is the general version of the stochastic advection-diffusion equation for a 

multicomponent mixture. We use a single velocity field v for all fluids. The Onsager mobility 

coefficients 𝛬𝑖𝑗  are symmetric, 𝛬𝑖𝑗 = 𝛬𝑗𝑖 . The evolution of the volume fraction for the last 

material is deduced from the volume conservation, ∑ 𝜑𝑖
𝑛
𝑖=1 = 1. 𝜁𝐶𝐻

𝑖 is a coupled Gaussian 

space-time white noise preserving the fluctuation-dissipation theorem, meaning that for all 

materials i and j, 〈𝜁𝐶𝐻
𝑖(𝒓, 𝑡)〉 = 0  and 〈𝜁𝐶𝐻

𝑖(𝒓, 𝑡)𝜁𝐶𝐻
𝑗(𝒓′, 𝑡′)〉 = −

2𝑣0

𝑁𝑎
∇[𝛬𝑖𝑗𝛿𝐷(𝑡 −

𝑡′)𝛁(𝛿𝐷(𝒓 − 𝒓′))], where 𝑁𝑎 is the Avogadro number and 𝜎𝐶𝐻 is a prefactor used to adjust the 

intensity of the noise. The mobility is interpolated between the mobility in the condensed phase 

𝛬𝑖𝑗
𝑐𝑜𝑛𝑑, and the ones in the gas phase 𝛬𝑖𝑗

𝑣𝑎𝑝
: 

𝛬𝑖𝑗 = (𝛬𝑖𝑗
𝑐𝑜𝑛𝑑)

(1−𝜙𝑣𝑎𝑝)
(𝛬𝑖𝑗

𝑣𝑎𝑝)
𝜙𝑣𝑎𝑝

 (10) 

In the gas phase, we assume the composition dependence of the mutual diffusion coefficients 

and the coupling between fluxes to be weak so that the mobility coefficients are written as 

𝛬𝑖𝑖
𝑣𝑎𝑝

= 𝜑𝑖𝐷𝑖
𝑣𝑎𝑝

and 𝛬𝑖𝑗
𝑣𝑎𝑝

= 0, where 𝐷𝑖
𝑣𝑎𝑝

 is the Fickian diffusion coefficient of the gas in the 

air. In the condensed phase, the mobilities depend on the diffusion coefficients, but they are 

also composition-dependent. The “slow-mode theory” and the “fast-mode theory”, proposed by 

De Gennes [94] and Kramer [97], respectively, are implemented in the model. The expressions of 

the mobility coefficients in the liquid phase read for the slow mode model as 

{
 
 

 
 𝛬𝑖𝑖

𝑐𝑜𝑛𝑑
= 𝜔𝑖 (1−

𝜔𝑖
∑ 𝜔𝑘
𝑛
𝑘=1

)

𝛬𝑖𝑗
𝑐𝑜𝑛𝑑 = −

𝜔𝑖𝜔𝑗
∑ 𝜔𝑘
𝑛
𝑘=1

 (11) 

and for the fast mode model as 

{
 
 

 
 𝛬𝑖𝑖

𝑐𝑜𝑛𝑑 = (1 − 𝜑𝑖)
2𝜔𝑖 + 𝜑𝑖

2 ∑ 𝜔𝑘

𝑛

𝑘=1,𝑘≠𝑖

𝛬𝑖𝑗
𝑐𝑜𝑛𝑑 = −(1 − 𝜑𝑖)𝜑𝑗𝜔𝑖 − (1 − 𝜑𝑗)𝜑𝑖𝜔𝑗 + 𝜑𝑖𝜑𝑗 ∑ 𝜔𝑘

𝑛

𝑘=1,𝑘≠𝑖≠𝑗

 (12) 

Here, the coefficients 𝜔𝑖  are defined as 𝜔𝑖 = 𝑁𝑖𝜑𝑖𝐷𝑠,𝑖
𝑐𝑜𝑛𝑑({𝜑𝑖}, {𝜙𝑖}), whereby 𝐷𝑠,𝑖

𝑐𝑜𝑛𝑑  is the 

self-diffusion coefficient of the material i, which depends on the mixture composition and of 
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the phase state (amorphous or crystal). The self-diffusion coefficient in the liquid/amorphous 

phase 𝐷𝑠,𝑖
𝑙𝑖𝑞

 is strongly dependent on the mixture composition in a non-trivial way. We use in 

this work a simple power law known as the Vignes law, [98] 𝐷𝑠,𝑖
𝑙𝑖𝑞(𝜑) = ∏ (𝐷𝑠,𝑖

𝜑𝑘→1)
𝜑𝑘𝑛

𝑘=1 , where 

𝐷𝑠,𝑖
𝜑𝑘→1 is the self-diffusion coefficient of the (liquid) ith-material in the kth pure (liquid) material. 

Nevertheless, other simple assumptions can be made (weighted arithmetic or harmonic mean 

for instance). Additionally, the diffusion coefficient is expected to drop over orders of 

magnitude upon liquid-solid transition. To take this effect into account, we introduce the 

interpolation function defined by 

𝑙𝑜𝑔(𝑓(𝑥, 𝑑, 𝑐, 𝑤)) =
1

2
𝑙𝑜𝑔(𝑑) (1 + 𝑡𝑎𝑛ℎ(𝑤(𝑥 − 𝑐)))  (13) 

The penalty for the variable x is defined by 3 parameters d, c and w determining its amplitude 

d, its center position c and its width w, respectively. Taking the product of the self-diffusion 

coefficient in the liquid state and of this penalty function, 𝐷𝑠,𝑖
𝑐𝑜𝑛𝑑 is calculated as 

𝐷𝑠,𝑖
𝑐𝑜𝑛𝑑({𝜑𝑖}, {𝜙𝑘}) = 𝑓(𝜙𝑡𝑜𝑡, 𝑑𝑠𝑙 , 𝑐𝑠𝑙 , 𝑤𝑠𝑙)∏(𝐷

𝑠,𝑖

𝜑𝑗→1)
𝜑𝑗

𝑛

𝑗=1

  (14) 

In the equation above, 𝜙𝑡𝑜𝑡 = 1 −∏ (1 − 𝜙𝑘)
𝑛𝑐𝑟𝑦𝑠𝑡
𝑘=1  is an estimate of the overall crystallinity at 

a given position, and 𝑑𝑠𝑙 , 𝑐𝑠𝑙 , 𝑤𝑠𝑙  are the amplitude, centering and width of the diffusion 

coefficient variation upon liquid-solid transition. 

2.3. Kinetic equations: evaporation method 

The evaporation model and its behavior have been already presented elsewhere [90] and we here 

only briefly recall the approach and the equations. It mimics the Hertz-Knudsen representation 

of evaporation: the solvents undergo a very fast liquid-vapor phase transition, so that the vapor 

on top of the drying liquid is in quasi-static equilibrium with the condensed phase. The 

evaporation kinetics is governed by the comparatively slow diffusion process of solvent 

molecules from this (high partial pressure) equilibrium layer to the (low partial pressure) 

environment. The evolution of the order parameter of the gas phase is given by the advective 

Allen-Cahn equation: 

𝜕𝜙𝑣𝑎𝑝

𝜕𝑡
+ 𝒗𝛁𝜙𝑣𝑎𝑝 = −

𝑣0
𝑅𝑇

𝑀𝑣𝑎𝑝 (
𝜕𝛥𝐺𝑉
𝜕𝜙𝑣𝑎𝑝

− 𝛻 (
𝜕∆𝐺𝑉

𝜕(𝜵𝜙𝑣𝑎𝑝)
)) (15) 

Here, 𝑀𝑣𝑎𝑝 is the mobility for the condensed-gas phase interface. It is chosen to be very high, 

so that the quasi-static equilibrium between the condensed and the gas phase is ensured at any 
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time. The vapor phase is always already present at the beginning of the simulation (initial 

condition) and thus there is no need for fluctuations in Equation (15) to trigger evaporation. 

What is expected from the evaporation procedure is mainly to obtain the proper evaporation 

kinetics and time-dependent concentrations within the film. It has been verified in a previous 

paper[90] that this is the case, even without noise term in the Allen-Cahn equation. All materials 

considered in the simulation are present in the condensed phase as well as in the gas phase, 

because all volume fractions have to be strictly larger than 0 and smaller than 1. However, we 

distinguish 3 types of materials: first, the solutes are assumed to have a very low vapor pressure, 

so that the vapor state is very unfavorable for them (see Equation 4), and their volume fraction 

in the gas phase is very small. Thus, they stay in the condensed phase. Second, the solvents 

have a high vapor pressure and can escape from the condensed phase to move into the vapor 

phase. Due to the very fast Allen-Cahn kinetics, this results in the whole vapor phase being in 

equilibrium with the condensed phase. In order to model the diffusion process which is 

responsible for the evaporation kinetics, the solvents are driven out of the simulation domain 

by an outflux boundary condition at the top of the box. Third, the air is assumed to have a very 

high vapor pressure and therefore is almost exclusively present in the vapor phase. As solvents 

leave the simulation box, they are replaced by air to ensure the conservation of volume, 

∑ 𝜑𝑖
𝑛
𝑖=1 = 1. Note that we apply the tremendous simplification that the solvent densities do not 

vary upon liquid-vapor phase transition, which has been shown to not affect the proper 

simulation of the drying kinetics. [90] 

Because the condensed and the gas phase are in quasi-static equilibrium, the evaporation 

kinetics is fully independent of the mobility 𝑀𝑣𝑎𝑝 of the surface tension parameter 𝜀𝑣𝑎𝑝 and 

more generally, of the interface profile. It is fully determined by the expression of the outflux. 

If the solvent volume fractions in the gas phase were equal to zero or negligible, the outflux 

would be written as 

𝑗𝑖,𝐻𝐾 = 𝛼√
𝑣0

2𝜋𝑅𝑇

𝑁𝑖
𝜌𝑖
𝑃0 (𝜑𝑠𝑎𝑡,𝑖 (

𝜑𝑖,𝑠𝑖𝑚𝑢
𝑣𝑎𝑝

𝜑𝑠𝑎𝑡,𝑖
)

𝑁𝑖

− 𝜑𝑖
∞) (16) 

Here, 𝜑𝑖
∞ is defined as 𝜑𝑖

∞ = 𝑃𝑖
∞/𝑃0, with 𝑃𝑖

∞ being the partial pressure in the environment 

and 𝛼 being the evaporation-condensation coefficient. 𝜑𝑖,𝑠𝑖𝑚𝑢
𝑣𝑎𝑝

 is the simulated volume fraction 

of the material i in the vapor phase. This equation is the classical Hertz-Knudsen formula, [99] 

where the term (
𝜑𝑖,𝑠𝑖𝑚𝑢
𝑣𝑎𝑝

𝜑𝑠𝑎𝑡,𝑖
)
𝑁𝑖

compensates the assumption of constant densities. However, in order 

to recover exactly the Hertz-Knudsen behavior, the outflux needs to take into account the (not 
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always negligible) amount of solvent in the gas phase. The associated mass balance leads to the 

final expression of the outflux implemented at the upper boundary of the simulation box: 

𝑗𝑖
𝑧=𝑧𝑚𝑎𝑥 = 𝑗𝑖,𝐻𝐾 − (𝜑𝑖,𝑠𝑖𝑚𝑢

𝑣𝑎𝑝 + ∆𝜑𝑖,𝑠𝑖𝑚𝑢
𝑣𝑎𝑝 )( ∑ 𝑗𝑘,𝐻𝐾

𝑘∈{𝑠𝑜𝑙𝑣}

) +
𝑧𝑚𝑎𝑥𝛤𝑣𝑎𝑝

𝑑𝑡
∆𝜑𝑖,𝑠𝑖𝑚𝑢

𝑣𝑎𝑝
 (17) 

Here, ∆𝜑𝑖,𝑠𝑖𝑚𝑢
𝑣𝑎𝑝

 is the volume fraction variation in the vapor phase during a single time step, 

𝑧𝑚𝑎𝑥 the height of the simulation box and 𝛤𝑣𝑎𝑝 the proportion of vapor phase in the whole box. 

2.4. Kinetic equations: crystallization 

The evolution of the order parameters of the 𝑘 = 1…𝑛𝑐𝑟𝑦𝑠𝑡  crystalline materials obeys the 

advective stochastic Allen-Cahn equation: 

𝜕𝜙𝑘
𝜕𝑡

+ 𝒗𝛁𝜙𝑘 = −
𝑁𝑘𝑣0
𝑅𝑇

𝑀𝑘 (
𝜕𝛥𝐺𝑉
𝜕𝜙𝑘

− 𝛻 (
𝜕∆𝐺𝑉
𝜕(𝜵𝜙𝑘)

)) + 𝜎𝐴𝐶𝑓(𝜙𝑘 , 𝑑𝜁 , 𝑐𝜁 , 𝑤𝜁)𝜁𝐴𝐶
𝑘  (18) 

The mobility coefficient 𝑀𝑘 for the solid-liquid interface for crystals of material k can be chosen 

to be either constant, 𝑀𝑘 = 𝑀𝑘,0 or related to the self-diffusion coefficient of that material in 

the amorphous phase 𝑀𝑘 = 𝑀𝑘,0𝐷𝑠,𝑘
𝑙𝑖𝑞({𝜑}) 𝐷𝑠,𝑘𝑘

𝑙𝑖𝑞⁄ . Such a dependence is expected, [71] because 

crystal growth is not only driven by the thermodynamic properties, but also by the local mobility 

of the crystallizing atoms or molecules that have to spatially arrange in order to attach to the 

crystal. In this second case, the mobility is substantially increased when a solute is dispersed in 

a very mobile phase, for instance in a solvent. 𝜁𝐴𝐶
𝑘 is again a Gaussian white noise preserving 

the fluctuation-dissipation theorem, [100] i.e. for each material k, 〈𝜁𝐴𝐶
𝑘(𝒓, 𝑡)〉 = 0  and 

〈𝜁𝐴𝐶
𝑘(𝒓, 𝑡)𝜁𝐴𝐶

𝑘(𝒓′, 𝑡′)〉 =
2𝑁𝑘𝑣0

𝑁𝑎
𝑀𝑘𝛿𝐷(𝑡 − 𝑡′)𝛿𝐷(𝒓 − 𝒓′).  This noise term is responsible for 

nucleation and grain coarsening in the simulations. Here again, 𝜎𝐴𝐶 is a prefactor used to adjust 

the intensity of the noise. 𝑓(𝜙𝑘, 𝑑𝜁 , 𝑐𝜁 , 𝑤𝜁) is again defined by Equation 13 with the parameters 

𝑑𝜁, 𝑐𝜁, 𝑤𝜁 defining the amplitude, center and width of the interpolation function. This can be 

used to damp the fluctuations in the already crystalline domains, mainly in order to improve 

numerical stability without impacting the physical behavior of the simulation. Other methods 

have been proposed to simulate nucleation without using these numerically expensive 

fluctuations, typically by manually introducing new nuclei with a given (composition-

dependent) nucleation rate, [101] [102] [103] [104] including calculation of the proper nucleation rate, 

as well as radius [105] [52] [53] and shape [106] [107]. While being quite simple for binary blends with 

relatively homogeneous volume fractions in the liquid phase, these methods can become 
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complex in the situation we are after in this work, with three or more materials and a possibly 

very strong composition inhomogeneity. Another classical argument against the use of the 

stochastic Allen-Cahn equation is that nucleation events are expected to be rare, so that a 

considerable amount of time steps and thus a prohibitive computation time is required until 

nuclei arise spontaneously from the thermal fluctuations. Fortunately, for applications like 

solution-processed photovoltaics, nucleation occurs within time scales comparable to the drying 

time (and hence the simulated physical time), so that the nucleation events are indeed frequent. 

These reasons led us to consider the stochastic Allen-Cahn equation in order to generate the 

nucleation events. 

In addition to the order parameter fields 𝜙𝑘 , the marker field 𝜃𝑘 has to be updated in order to 

evolve in line with the order parameter field. In contrast to the usual OFPF models where a 

kinetic equation is prescribed, [51] [95] [54] we use a simple heuristic procedure for the generation 

and the evolution of the marker field for each material k, basing on previous work. [88] First, the 

detection of the nucleation events is done in the following way: initially, out of the crystalline 

domains the marker field is undefined. A given area in the simulation domain is assumed to 

correspond to a new nucleus if it does not have a defined marker value yet, and if the order 

parameter 𝜙𝑘  and the volume fraction 𝜑𝑘  exceed at the same time given threshold values 𝑡𝜙,𝑘 

and 𝑡𝜑,𝑘, respectively. All the nodes belonging to the same new nucleus are detected using a 

‘connected component labelling’ procedure, and the same, new marker value is attributed to all 

of them. Note that such nucleation events are forbidden in the direct neighborhood of already 

existing crystals (typically 2-4 mesh points around the crystals depending on the interface 

thickness) in order to avoid false detections due to fluctuations in the diffuse interface of the 

crystal. Second, once crystals are formed, the associated order parameter at a given mesh point 

can decrease (unstable nuclei smaller than the critical nucleus, grain coarsening, advection from 

an old position), so that the mesh point cannot be considered as crystalline anymore. Thus, at 

each time step, the marker value of all nodes where the order parameter 𝜙𝑘 is less than the 

threshold values 𝑡𝜙,𝑘 or the volume fraction 𝜑𝑘  less than 𝑡𝜑,𝑘 is set to ‘undefined’ again. Third, 

around already existing crystals, the associated order parameter at a given mesh point can also 

increase (crystal growth for nuclei bigger than the critical nucleus, advection of the crystal to a 

new position) so that they can be considered as crystal nodes and should be attributed a marker 

value. This is done in the following way: when the value of the order parameter and the volume 

fraction on these surrounding nodes exceeds the threshold values 𝑡𝜙,𝑘  and 𝑡𝜑,𝑘 , they are 

attributed the marker value of the (already crystallized) neighboring node with the highest 
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crystallinity 𝜙𝑘𝜑𝑘 . The marker value in a single crystallite is thus uniform, so that the 

orientation mismatch energy term in Equation 7 is only non-zero at the boundaries between two 

crystals with different marker values, as desired. 

Whenever a gas phase is present in the system, crystals can reach the film surface so that a 

complex area with liquid-solid, liquid-vapor and solid-vapor interfaces may arise. We define 

the pure vapor as the area where 𝜙𝑣𝑎𝑝 > 1 − 𝑡𝜙𝑣𝑎𝑝  and the condensed-gas phase interface as 

the area where 1 − 𝑡𝜙𝑣𝑎𝑝 > 𝜙𝑣𝑎𝑝 > 𝑡𝜙𝑣𝑎𝑝 . Here, 𝑡𝜙𝑣𝑎𝑝  is a threshold value that should be small. 

All crystalline order parameters and marker values are set to zero in the pure vapor. In order to 

avoid problems in the numerically critical solid-vapor interfaces, both noise contributions in the 

Allen-Cahn and Cahn-Hilliard equations are switched off, and no new crystal can appear in the 

condensed-gas phase interface as well as in the pure vapor. Despite of this, crystals formed in 

the film can reach the condensed-gas phase interface. However, a high volume fraction of 

crystalline solute in the vapor phase and in the condensed-gas phase interface is energetically 

very unlikely, so that crystals tend to be unstable when they reach the condensed-gas phase 

interface. Since this is an area often featuring a high volume fraction of solvent, [90] and therefore 

the Allen-Cahn mobility of the crystals are very high, this leads to a fast disappearance of any 

crystal in the condensed-gas phase interface. To avoid this unphysical effect due to the diffuse 

interface approach, an interaction energy has been defined in the solid-vapor interfaces (see 

Equation 5). This strongly inhibits the overlap of the order parameters of the crystals 𝜙𝑘 and of 

the vapor 𝜙𝑣𝑎𝑝 . The interaction is active only inside the crystals (where a marker value is 

defined) and the directly surrounding areas representing the remaining diffuse crystal interface 

(typically 2-4 mesh points). The interaction energy is given by 

𝐸𝑘(𝜑𝑘, 𝜙𝑘) = 𝐸𝑘,0
𝑑𝑠𝑣

𝑓(𝜑𝑘𝜙𝑘, 𝑑𝑠𝑣, 𝑐𝑠𝑣, 𝑤𝑠𝑣)
 (19) 

where 𝐸𝑘,0 is the interaction energy for a perfectly crystalline region. Here, we use again the 

interpolation function f (Equation 13), and the parameters 𝑑𝑠𝑣, 𝑐𝑠𝑣, 𝑤𝑠𝑣 define the amplitude, 

center and width of the interpolation function. This means that the interaction energy typically 

increases progressively over orders of magnitude from zero to 𝐸𝑘,0 when the product 𝜑𝑘𝜙𝑘 

exceeds the value 𝑐𝑠𝑣, preventing the vapor order parameter 𝜙𝑣𝑎𝑝  to enter well-formed crystals. 

Unfortunately, this is still not sufficient to ensure the stability of emerging crystals at the film 

surface in a dilute solution because both order parameters 𝜙𝑘 and 𝜙𝑣𝑎𝑝 overlap in the diffuse 

interface, promoting the reduction of the order parameter 𝜙𝑘. Since the solute volume fraction 

in the diffuse interface is far from 1, the diffusion coefficients and the Allen-Cahn mobility 
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might be very high and the interface progressively disappears, which leads to a shrinking crystal. 

To avoid this, the Allen-Cahn mobility 𝑀𝑘 is also strongly damped in the regions where the 

solid-vapor interaction is active, using 𝑀𝑘 = 𝑓(𝜑𝑘𝜙𝑘, 𝑑𝑠𝑣, 𝑐𝑠𝑣, 𝑤𝑠𝑣)𝑀𝑘,0 𝐷𝑠,𝑘
𝑙𝑖𝑞({𝜑𝑘}) 𝐷𝑠,𝑘𝑘

𝑙𝑖𝑞⁄ . As 

soon as the product 𝜑𝑘𝜙𝑘 becomes higher than 𝑐𝑠𝑣, a crystal at the film surface becomes stable. 

This will be illustrated and discussed in Section 4.3. 

2.5. Kinetic equations: fluid dynamics 

The Cahn-Hilliard and the Allen-Cahn equations together ensure that the system progressively 

relaxes towards its thermodynamic equilibrium, by minimizing its free energy relative to the 

volume fraction and the order parameter variables. In addition to this, an advection term is 

introduced in the phase field equations (Equations 9, 15, 18) in order to take into account the 

impact of fluid motion on the system evolution. At the micro- or nanometer scale considered in 

this work, fluid motion is dominantly induced by capillary forces. These capillary forces are 

due to the numerous interfaces present in the system. In this section, we present the approach 

used to calculate the capillary forces from the phase fields and thereafter the velocity field to be 

used in the advective Cahn-Hilliard and Allen-Cahn equations. 

The starting point are the continuity and momentum conservation equations, the energy 

conservation not being taken into account in the current model: 

{

𝜕𝜌

𝜕𝑡
+ 𝛻(𝜌𝒗) = 0

𝜌 (
∂𝒗

∂𝑡
+ 𝒗𝛁𝒗) = 𝑭 −  𝛁𝑃 + 𝛁𝚺

  (20) 

In these equations, v is the velocity, F are the applied forces, P is the pressure and ∑ the viscous 

stress tensor. We assume the following in the current work: 

 Even if we deal with multicomponent mixture, we make use of only one single velocity 

field that will be used for the advection of all materials present in the system. 

 We assume perfect incompressibility, even in the vapor phase, as we did for the phase-

field equations. Moreover, the density is assumed to be independent of the composition, 

which is a reasonable assumption for organic materials we wish to investigate. 

 Since we are targeting at thin film applications, all length scales are sub-micrometer, 

and the Reynolds number is expected to be orders of magnitude smaller than 1. Thus, 

we are dealing with Stokes flows, whereby the inertial terms can be neglected. 
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 For these length scales, the dominant forces are the capillary forces stemming from the 

volume fraction and order parameter gradients 𝑭𝝋 and 𝑭𝝓, respectively. In particular, 

gravity forces are neglected. 

 The single fluid considered for the calculation of the velocity field is assumed to be a 

Newtonian fluid with inhomogeneous shear viscosity 𝜂𝑚𝑖𝑥. Since we might be dealing 

with solute-solvent systems, including polymers for example, the viscosity is supposed 

to be strongly dependent on the composition. Moreover, the simulated mixture can 

contain crystals, which will be represented as highly viscous domains, and a vapor phase 

of very low viscosity. Hence, the viscosity depends on the order parameters 𝜙𝑘  and 

𝜙𝑣𝑎𝑝. Except when dealing with soft crystals, crystallites should be so viscous that they 

do not deform because of the flow. On the other hand, even when dealing with polymer 

mixtures, non-Newtonian viscous properties as well as viscoelastic or thixotropic 

behavior are ignored for the sake of simplicity. 

As a consequence, we use the following simplified continuity and momentum conservation 

equations: 

{
𝛻𝒗 = 0
− 𝛁𝑃 + 𝛁(2𝜂𝑚𝑖𝑥({𝜑𝑖}, {𝜙𝑘}, 𝜙𝑣𝑎𝑝)𝑺) + 𝑭𝝋 + 𝑭𝝓 = 𝟎  (21) 

where S is the strain rate tensor. Regarding the viscosity, our aim is neither to propose nor 

develop a physical model or a constitutive law for multicomponent solute-solvent mixtures, nor 

to use any already-existing sophisticated model. We rather use a very simple functional form 

that renders qualitatively the basic phenomena, namely a high viscosity increase upon liquid-

solid phase transition, a high viscosity decrease upon liquid-gas phase transition, and the 

viscosity evolution upon mixture composition, notably the viscosity increase of drying films 

upon evaporation. We propose the following equation for the viscosity in the condensed phase 

(where 𝜙𝑣𝑎𝑝 ≤ 𝑡𝜙𝑣𝑎𝑝 , condensed-gas phase interface not included): 

1

𝜂𝑚𝑖𝑥
=

1

𝜂𝑐𝑜𝑛𝑑
= 𝑓( ∑ 𝛿𝐷(𝜃𝑘)𝜑𝑘𝜙𝑘

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1

, 𝑑𝜂 , 𝑐𝜂 , 𝑤𝜂)∑
𝜑𝑖
𝜂𝑖

𝑛

𝑖=1

  (22) 

As can be seen from the equation above, the viscosity in the amorphous domains is a weighted 

harmonic mean of the pure material viscosities 𝜂𝑖. In the crystalline areas (where a marker value 

is defined, as indicated by 𝛿𝐷(𝜃𝑘)), the viscosity is increased according to the crystallinity 

𝜑𝑘𝜙𝑘 , using the interpolation function Equation 13 with parameters 𝑑𝜂 , 𝑐𝜂 , 𝑤𝜂  for the 

amplitude, center and width of the penalty. Concerning the vapor phase, the viscosity is 

expected to be orders of magnitude lower than in the condensed phase. Taking this into account 
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would lead to intractable simulation times. Therefore, we use unrealistically high viscosity 

values for the vapor phase. Thus, the calculated flow in this area is not expected to be correct, 

which is fully acceptable since our concern is the morphology formation within the condensed 

phase. Nevertheless, the vapor phase viscosity is chosen much smaller than the condensed phase 

viscosity. The main advantage of this, in the context of a diffuse interface model, is to avoid the 

implementation of a free surface boundary condition at the condensed-gas phase interface, 

because the vapor phase is a low-viscosity layer which allows mimicking the free surface 

boundary condition. [108] [109] [110] The viscosity of the vapor phase (interface and pure vapor 

phase) is defined as 

𝜂𝑚𝑖𝑥 = 𝜂𝑣𝑎𝑝 = 𝑚𝑎𝑥(𝜂𝑚𝑖𝑥
1−𝜙𝑣𝑎𝑝𝜂𝑔

𝜙𝑣𝑎𝑝 , 𝑚𝑖𝑛(𝜂𝑐𝑜𝑛𝑑)/𝑘𝜂)  (23) 

where 𝜂𝑔  is a (small) user-defined viscosity value for the gas, 𝑚𝑖𝑛(𝜂𝑐𝑜𝑛𝑑)  the smallest 

viscosity value found in the condensed phase and 𝑘𝜂 the acceptable ratio between both. This 

allows for a sufficient but limited viscosity contrast between the condensed and the vapor phase 

and avoids numerical problems that could occur during simulation of film drying: in order to 

mimic the free surface condition, the gas phase viscosity has to be significantly smaller than the 

film viscosity right from the beginning. Upon drying, the viscosity of the film might increase 

tremendously (for polymer solutions for instance) and our implementation allows for a 

corresponding increase of the vapor viscosity. This prevents the formation of a huge viscosity 

contrast at the film surface. 

The coupling between the fluid dynamics and the phase-field equations is ensured, on the one 

hand, by the advection term in the Cahn-Hilliard and Allen-Cahn equations and, on the other 

hand, by the calculation of the capillary forces from the phase fields for the momentum 

conservation equation. Different ways of calculating the capillary forces have been proposed in 

the literature, which we call, following Jaensson, [87] the ‘stress form’ 𝑭(𝑢)~𝑎|𝛁𝑢|𝟐𝚰 − 𝛁𝑢 ×

𝛁𝑢 with a=0, [77] a=1/2 [78] [79] [80] [81] or a=1 [87], the ‘first potential form’ 𝑭(𝑢)~
𝛿∆𝐺𝑉

𝛿𝑢
𝛁𝑢 [82] 

[87] and the ‘second potential form’ 𝑭(𝑢)~𝑢𝛁
𝛿∆𝐺𝑉

𝛿𝑢
 [83] [87] . In fact, these expressions have 

exactly the same deviatoric part and differ only by their isotropic part (see [87] [83] [84] and the 

derivation in the Supporting information S1). In other words, they differ only by the definition 

of the pressure. Therefore, when solving Equation 21 for P and v with the different possible 

expressions of the capillary forces, the solution for the velocity field will exactly be the same, 

and only the calculated pressure field will be different. All three forms have been evaluated and 

it turns out from these tests that the stress form allows for the best numerical convergence 

properties. Generalizing the expression above for multicomponent volume fraction and order 
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parameter fields, the expression of the capillary forces read (the expression for the potential 

forms can be found in the Supporting Information S1): 

{
 
 

 
 𝑭𝝋 = 𝜵[∑𝜅𝑖(|𝜵𝜑𝑖|

𝟐𝜤 − 𝜵𝜑𝑖 × 𝜵𝜑𝑖)

𝑛

𝑖=1

]

𝑭𝝓 = 𝜵 [ ∑ 𝜀𝑘
2(|𝜵𝜙𝑘|

𝟐𝜤 − 𝜵𝜙𝑘 × 𝜵𝜙𝑘)

𝑛𝑐𝑟𝑦𝑠𝑡

𝑘=1

+ 𝜀𝑣𝑎𝑝
2 (|𝜵𝜙𝑣𝑎𝑝|

𝟐
𝜤 − 𝜵𝜙𝑣𝑎𝑝 × 𝜵𝜙𝑣𝑎𝑝)]

   (24) 

3. Implementation 

3.1. Dimensionless equations 

The dimensionless kinetic equation can be derived using the scaling coefficients for energy 

density 𝑔𝑠𝑐, for diffusion coefficients 𝐷𝑠𝑐 and for length 𝑙𝑠𝑐. They are chosen as 𝑔𝑠𝑐 = 𝑅𝑇 𝑣0⁄ , 

𝐷𝑠𝑐 = 𝑚𝑎𝑥(𝑁𝑖𝐷𝑠,𝑖), and 𝑙𝑠𝑐 = √𝑚𝑎𝑥 (𝜅1…𝑛, 𝜀1…𝑛𝑐𝑟𝑦𝑠𝑡
2, 𝜀𝑣𝑎𝑝2) /𝑔𝑠𝑐 to be consistent with the 

size of the thinnest interface of the system. The scaling coefficient for time is given by 𝑡𝑠𝑐 =

𝑙𝑠𝑐
2 𝐷𝑠𝑐⁄ . 

Defining the reduced variables �̃� = 𝑡/𝑡𝑠𝑐 , �̂� = 𝒗𝑡𝑠𝑐/𝑙𝑠𝑐 , �̃� = 𝑙𝑠𝑐𝜵 , Λ̃𝑖𝑗 = 𝛬𝑖𝑗/𝐷𝑠𝑐 , 𝛥𝐺𝑉
𝑙𝑜�̃� =

𝛥𝐺𝑉
𝑙𝑜𝑐/𝑔𝑠𝑐, �̂�𝑖 = 𝜅𝑖/(𝑔𝑠𝑐𝑙𝑠𝑐

2 ) and 𝜁𝐶�̂�
𝑖
= 𝑡𝑠𝑐𝜁𝐶𝐻

𝑖, and making use of the non-local free energy 

density (Equation 7) the n-1 dimensionless advective Cahn-Hilliard-Cook equations read 

𝜕𝜑𝑖
𝜕�̂�

+ �̂��̂�𝜑𝑖 = �̂� [∑ �̂�𝑖𝑗�̂� (
𝜕∆𝐺�̂�
𝜕𝜑𝑖

−
𝜕∆𝐺�̂�
𝜕𝜑𝑛

− �̂�𝑖�̂�
2𝜑𝑖 + �̂�𝑛�̂�

2𝜑𝑛)

𝑛−1

𝑗=1

] + 𝜎𝐶𝐻𝜁𝐶�̂�
𝑖
 (25) 

Defining the additional reduced variables �̂�𝑣𝑎𝑝 = 𝑡𝑠𝑐𝑀𝑣𝑎𝑝 , 𝜀�̂�𝑎𝑝 = 𝜀𝑣𝑎𝑝/√𝑔𝑠𝑐𝑙𝑠𝑐2 , �̂�𝑘 =

𝑡𝑠𝑐𝑀𝑘 , 𝜀�̂� = 𝜀𝑘/√𝑔𝑠𝑐𝑙𝑠𝑐2 , 𝜀𝑔,�̂� = 𝜀𝑔,𝑘/(𝑔𝑠𝑐𝑙𝑠𝑐), 𝜁𝐴�̂�
𝑘
= 𝑡𝑠𝑐𝜁𝐴𝐶

𝑘 , the dimensionless advective 

Allen-Cahn equation for the condensed-gas phase transition reads: 

𝜕𝜙𝑣𝑎𝑝

𝜕�̂�
+ �̂��̂�𝜙𝑣𝑎𝑝 = −�̂�𝑣𝑎𝑝 (

𝜕∆𝐺�̂�
𝜕𝜙𝑣𝑎𝑝

− 𝜀�̂�𝑎𝑝
2�̂�2𝜙𝑣𝑎𝑝) (26) 

with the boundary condition 𝑗�̂�
𝑧=𝑧𝑚𝑎𝑥 = 𝑗𝑖

𝑧=𝑧𝑚𝑎𝑥𝑡𝑠𝑐/𝑙𝑠𝑐. The k dimensionless advective stochastic 

Allen-Cahn equations for liquid-solid phase transition read: 

𝜕𝜙𝑘
𝜕�̂�

+ �̂��̂�𝜙𝑘 =
−𝑁𝑘�̂�𝑘 (

𝜕∆𝐺�̂�
𝜕𝜙𝑘

− 𝜀�̂�
2�̂�2𝜙𝑘 + 𝑝′(𝛷𝑘, 𝜉0,𝑘)

𝜋𝜀𝑔,�̂�

2
|�̂�|𝛿(�̂�𝜃𝑘))

+𝜎𝐴𝐶𝑓(𝜙𝑘, 𝑑𝜁 , 𝑐𝜁 , 𝑤𝜁)𝜁𝐴�̂�
𝑘

  (27) 
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Finally, defining �̂� = 𝑃/𝑔𝑠𝑐 , �̂�𝑚𝑖𝑥 = 𝜂𝑚𝑖𝑥/(𝑔𝑠𝑐𝑡𝑠𝑐) , �̂� = 𝑡𝑠𝑐𝑺 , �̂�𝝋 = 𝑭𝝋𝑙𝑠𝑐/𝑔𝑠𝑐  and �̂�𝝓 =

𝑭𝝓𝑙𝑠𝑐/𝑔𝑠𝑐, the dimensionless continuity and momentum conservation equations read: 

{
�̂��̂� = 0
− �̂��̂� + �̂�(2�̂�𝑚𝑖𝑥�̂�) + �̂�𝝋 + �̂�𝝓 = 𝟎

  (28) 

3.2. Discretization 

The dimensionless equations are discretized using a second order finite volume scheme on a 

3D regular Cartesian staggered grid (see Figure 1) with centered differences for the phase field 

part and upwind/downwind differences for the advection and fluid dynamics part. Neumann, 

Dirichlet or periodic boundary conditions can be applied in each of the three directions. The use 

of staggered grids simplifies the discretization of the momentum (written at the respective 

velocity nodes) and continuity (written at the pressure nodes) equations. [110] Moreover, 

choosing the phase-field nodes to lie together with the pressure nodes simplifies the 

discretization of the capillary forces (written at the velocity nodes) and of the advection term 

(written at the phase-field nodes). The advection is calculated using a second order MUSCL 

scheme [111] with a Kurganov and Tabor scheme [112] and a Superbee flux limiter. [113] Indeed, 

other flux limiters (MinMod, van Leer, van Alaba, Sweby…) have been implemented and 

evaluated on various test cases of pure advection of crystalline or droplet structures. But the 

results turns out to be more satisfactory with the Superbee, in the sense that the structure shape 

are best conserved with this flux limiter. 

 

Figure 1: representation of the staggered grids used for the discretization in the 2D case 
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The discretization of the noise terms in the Cahn-Hilliard-Cook equations deserves some 

details. Basing of the work of Petschek, [114] Schaefer proposed an implementation of this noise 

using uncorrelated random numbers for a three component system. [64] In this work, we 

generalize the method of Schaefer to a multicomponent mixture. The final expression of the 

discretized noise for the material i at the mesh point xa in the x-direction is (see Supporting 

Information S2): 

𝜁𝐶𝐻,𝑎
𝑖 =

∑(𝑠𝑖𝑔𝑛 (𝛬𝑖𝑘
𝑎+
1
2)√|𝛬𝑖𝑘

𝑎+
1
2| 𝐵𝑖𝑘

𝑎+1 − 𝑠𝑖𝑔𝑛 (𝛬𝑖𝑘
𝑎−
1
2)√|𝛬𝑖𝑘

𝑎−
1
2| 𝐵𝑖𝑘

𝑎)

𝑖−1

𝑘=1

+√2𝛬𝑖𝑖
𝑎+

1
2𝐵𝑖𝑖

𝑎+1 −√2𝛬𝑖𝑖
𝑎−

1
2𝐵𝑖𝑖

𝑎

+ ∑ (√|𝛬𝑖𝑘
𝑎+

1
2| 𝐵𝑖𝑘

𝑎+1 −√|𝛬𝑖𝑘
𝑎−

1
2| 𝐵𝑖𝑘

𝑎)

𝑛

𝑘=𝑖+1

 (29) 

where the 𝐵𝑖𝑘 are n fields of Gaussian random numbers with variance 
2𝑣0

𝑁𝑎∆𝑥3∆𝑦∆𝑧∆𝑡
 coupling the 

fluctuations of the materials i and k. Similar expressions can be found in the y- and z-direction 

so that in 3D, the thermal fluctuations are calculated from 3(𝑛(𝑛 + 1) 2⁄ − 1) independent 

fields of Gaussian random numbers. 

3.3. Time stepping 

The time stepping scheme proceeds in the following way: first, in order to obtain the velocity 

field, Equation 28 is solved for v and P using Equation 22 and 23 for the viscosity and Equation 

24 for the capillary forces. Second, making use of the calculated velocity field, the coupled 

advective phase-field Equations 25-27 are solved for {𝜑𝑖}, {𝜙𝑘}, 𝜙𝑣𝑎𝑝  using the local free 

energy defined by Equations 2-6 and the boundary condition Equations 16-17. Third, the marker 

fields 𝜃𝑘 are updated with the procedure described above (see Figure 2). 

In realistic simulations, one of the challenges is that the different time scales of the problem 

(for diffusion, crystallization, advection, evaporation…) might differ by orders of magnitude. 

This makes implicit time stepping methods necessary to solve the phase field equations. Indeed, 

using explicit time stepping would require very small time steps for the sake of numerical 

stability, for instance because of the fourth order spatial derivative in the Cahn-Hilliard equation 

or the very high mobility values used for the Allen-Cahn mobility for the condensed-gas phase 

transition. This would lead to intractable simulation times even for 1D simulations. As a 

consequence, a set of unconditionally A- and L-stable diagonally implicit Runge-Kutta (DIRK) 
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time schemes [115] [116] have been implemented, from the one-stage, first-order Euler backward 

method to the five-stage, fourth-order SDIRK4(3)5L[1]SA_C(2) method. In practice, we find 

that in almost all of the performed simulations, the two-stage, second-order Pareschi-Russo (see 

Supporting Information S3) method leads to the best compromise between time convergence 

properties and simulation time. Note that the advection part of the phase-field equations could 

also be solved separately using high-order explicit Runge-Kutta methods, but we obtain better 

results by solving the whole, coupled advective phase-field equations at a time. 

 

Figure 2: Overview of the solution procedure for one time step in a single stage time stepping 

method. In the case of multistage time stepping, this fluid mechanics + phase field resolution 

procedure is repeated at each stage before calculating the phase fields at the next time from the 

results at all stages according to the Butcher matrix. 

For a computationally efficient simulation, it is desired that the time steps become as large as 

possible. In practice, the time steps can vary over orders of magnitude during one single 
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simulation. We use adaptive time steps with a heuristic strategy basing on a simple principle: it 

is required that all volume fractions everywhere in the simulation box lie in the ]0,1[ interval. 

If this condition is not fulfilled with the calculated solution, the time increment is rejected and 

recalculated with a time step reduced by 50%. Otherwise, the time step is increased by 20% for 

the next time increment. In order to reach longer time steps, the local part of the free energy is 

linearized relative to the field variables {𝜑𝑖}, {𝜙𝑘}, 𝜙𝑣𝑎𝑝. On top of this, several upper limits are 

set to the time step and constantly updated during the simulation. 

 The first upper limit is given by the Courant-Friederichs-Lewy (CFL) criterion 

calculated using the expected interface velocity 𝑣𝑖𝑛𝑡(𝑡) that can be derived from the 

outflux boundary condition (Equation 17)  ∆𝑡
𝑣𝑖𝑛𝑡(𝑡)

∆𝑥
< 𝐶𝐶𝐹𝐿1 , where ∆𝑥  is the grid 

spacing and 𝐶𝐶𝐹𝐿1 a number chosen smaller than 1. 

 The second upper limit is given by the Courant-Friederichs-Lewy criterion calculated 

using the velocity field v obtained from the fluid mechanics equations, ∆𝑡 ∙

𝑚𝑎𝑥𝒓 |∑
𝑣𝑖(𝒓)

∆𝑥

𝑛𝑑𝑖𝑚
𝑖=1 | < 𝐶𝐶𝐹𝐿2, where 𝑛𝑑𝑖𝑚 is the dimensionality of the simulation, r the 

position of a grid point and 𝑣𝑖(𝒓) the projection of the velocity in the ith-direction. 

 The third upper limit is given by the stability criterion for explicit time stepping relative 

to the Allen-Cahn equations for a liquid-solid transition, ∆𝑡 <

𝑅𝑇

𝑣0

2−𝑛𝑑𝑖𝑚𝑑𝑥2

𝑚𝑎𝑥𝒓,𝑘(𝑁𝑘𝑀𝑘(𝒓))𝑚𝑎𝑥𝑘(𝜀𝑘
2)

. Even if this criterion might in principle be overcome with 

implicit time stepping, it turns out that the time convergence is often not guaranteed 

beyond this value, and that the updates of the marker fields might become problematic, 

especially at grain boundaries. 

Using large time steps might in principle prevent the simulation to converge in time. In practice, 

it turns that the rules for time step management listed above together with the second order 

Pareschi-Russo time stepping method ensure proper time convergence. For each simulation, the 

volume conservation for all non-evaporating materials and the decrease of the total energy 𝐺𝑡𝑜𝑡 

with increasing time are checked for. If the volume conservation is not fulfilled with sufficient 

precision, the problem can be simply solved by limiting the time steps to smaller values. 

When strong fluctuations of the volume fraction and/or order parameter fields are present, the 

capillary forces and the viscosity calculated from the phase fields can be very noisy, which may 

lead to a very irregular velocity field and a severe associated Courant-Friederichs-Lewy 

condition. In order to regularize the velocity field, we use modified, blurred phase fields 
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(filtered with a Gaussian filter) for the calculation of the capillary forces in Equation 24. The 

viscosity field calculated from Equations 22, 23 is also filtered with the same Gaussian filter 

before solving the equation for the fluid dynamics. The impact of this filtering procedure on the 

overall physical behavior of the simulation turns out to be negligible, while significantly 

enhancing the numerical efficiency. 

It should be pointed out that the presence of many different time scales results in various 

numerical and modelling challenges. 

 First, if the physical processes to be simulated occur at different time scales, this might 

strongly impact the computational time. As stated above, three upper boundaries related 

to evaporation, crystallization and advection limit the time step size. On the one hand, 

the balance between these processes determines the computational cost. For instance, in 

the simulation of a drying film, if evaporation is limiting the size of the time step, the 

computational cost for the simulation is minimal. If advection is limiting the time step 

instead, e.g. a factor 10 smaller, then the computational cost is simply 10 times higher. 

At some point, prohibitive computational cost restricts the accessible parameter space. 

In this example, for realistic drying film simulations, this leads us to use unrealistically 

high viscosity values in the vapor and in the dilute solution, as discussed in Section 2.5 

above and Section 4.3 below. On the other hand, coarsening processes (after LLPS 

and/or for grain coarsening) are very slow processes as compared to the phase build up 

process itself (LLPS or crystal nucleation and growth process). Therefore, investigation 

of coarsening requires very long simulations. 

 Second, the strong mobility gradients that may arise (due to composition and order 

parameter dependent diffusion coefficients, Allen-Cahn mobilities, viscosities) in the 

simulation domain, especially at interfaces, can in principle lead to numerical 

difficulties, where the LV (or even the SV) interface appears to be the most problematic. 

It has to be sufficiently thick and the viscosity gradient between gas and condensed 

phase needs to be limited to enable proper solver convergence. Otherwise, no 

problematic restrictions regarding the resolution of both systems of equations (phase 

field on the one hand and fluid mechanics on the other hand) have been observed so far. 

Beyond this, having a fine mesh is desirable in the regions of high mobility gradients 

for accurate numerical solutions. There is off course a trade-off between computational 

cost and accuracy of the solution, but we have not been confronted so far to problematic 

situations that would jeopardize the results regarding the morphology development. 
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 Third, the strong mobility gradients at interfaces might unfortunately lead to unphysical 

phenomena in the simulation. This is especially the case for crystals, whereby the (in 

the real world very sharp) interface is represented by a diffuse interface in the phase-

field framework. In order to avoid unphysical effects regarding crystal nucleation and 

stability, specific adjustments of the model are necessary. This is a major concern in this 

work, and this will be discussed in detail in Sections 4.2 and 4.3. 

The code is implemented in parallel. The advective phase-field equations on the one side, and 

the fluid mechanics equations on the other side, are solved using the MUMPS direct solver [117] 

[118] through the PETSc library. [119] [120] [121] The computational time strongly depends on the 

number of time steps required to simulate the desired physical time, on the number of used 

cores, and of course on the number of degrees of freedom, which is the number of grid points 

times the number of coupled equations solved. For the simulations presented in this papers, this 

ranges from one hour on 4 cores (simulations of pure crystal advection, Section 4.3) to 5 days 

on 32 cores (full simulations, Section 5). 

As described above, the equations are formulated and implemented for any number 𝑛  of 

materials. Thus, the extension of the simulations presented in this work to more components is 

straightforward and does not require any code modification. However, the computational cost 

increases significantly, especially because the number of degrees of freedom in the Cahn-

Hilliard equation system increases with (𝑛 − 1)2. Most importantly, however, the analysis of 

the interactions between all the physical processes at play, and thus the understanding and the 

interpretation of the simulation results, might become quickly very challenging. 

  



  

26 

 

4. Benchmarks 

In this section, we summarize some of the benchmark and test cases used to check the behavior 

of the model. To begin with, let us mention shortly some results on the individual, uncoupled 

building blocks. The behavior of our implementation of the Cahn-Hilliard equation has already 

been described in details in previous works. [88] [122] Additionally, we check that the 

implementation of the noise in the Cahn-Hilliard-Cook equation (Equation 9) gives consistent 

and meaningful results even with more than three materials, although we are unfortunately not 

aware of any benchmark test for such mixtures. The behavior of the stochastic Allen-Cahn 

equation is detailed in Section 4.2 below. Concerning the fluid dynamics part, we verify the 

code by comparing the simulation data to analytical solutions of simple flow problems 

(Poiseuille and Couette flow). We also check the implementation in situations with non-

constant viscosity by simulating a Couette flow with a constant viscosity gradient, as well as a 

test case proposed by Gerya regarding advection at the boundary between two areas with 

different viscosities and densities. [123] Next, we investigate the advective part alone in the 

advective Cahn-Hilliard and Allen-Cahn equations. For this, we simulate the pure advection at 

constant velocity of a structure typically encountered in phase-field simulations, namely a 

domain of 5-10 grid points radius with a diffuse interface of 4-8 grid points thickness. It turns 

out that the second order MUSCL scheme is necessary to avoid numerical diffusion and thus to 

preserve the shape of the structure. As mentioned before, it is best preserved with the Superbee 

limiter. Moreover, with such a coarse mesh in the interface region and for large time steps 

(typically for a Courant-Friederichs-Lewy criterion fixed by 𝐶𝐶𝐹𝐿2 > 0.1), first-order time 

stepping schemes generate a significant numerical diffusion so that a second or higher-order 

time stepping scheme is required for proper calculations. 

The coupling of the Allen-Cahn and Cahn-Hilliard equations has also already been described 

in our previous work, for the simulation of crystallization and liquid-liquid phase separation [88] 

as well as for the simulation of evaporation. [90] In the following, we thus mainly focus on the 

new building blocks of the framework. First, we benchmark the behavior of the coupled Navier-

Stokes-Cahn-Hilliard system in the case of spinodal decomposition in a binary mixture. Second, 

we illustrate the coupling of the stochastic Allen-Cahn equation with the Cahn-Hilliard equation 

by simulating nucleation, growth and coarsening of crystallites in a polymer solution. Third, we 

discuss the coupling of the whole set of equations by simulating drying films containing one or 

several crystallites. 
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4.1. Liquid-liquid phase separation with the coupled Navier-Stokes-Cahn-

Hilliard equations 

To check the implementation of the coupling of the Cahn-Hilliard equation with the fluid 

mechanics equations, and especially of the capillary forces, we first perform a static benchmark 

test regarding the Laplace pressure: starting from a 2D droplet in an immiscible binary mixture, 

we let the droplet grow until the equilibrium is reached. We then measure the droplet radius 𝑅, 

the pressure drop ∆𝑃 between the inside and the outside of the droplet, and the surface tension 

𝜎. The procedure is repeated for different initial concentrations (and hence different final radii) 

and 𝜅 values (and hence different surface tensions) and we verify that the Laplace law ∆𝑃 =

𝜎 𝑅⁄  is well recovered. 

We then perform 2D simulations of spinodal decomposition with the coupled Cahn-Hilliard-

Navier-Stokes equations. The investigated system is an incompatible binary symmetric critical 

mixture (50:50 blend, 𝑁1 = 𝑁2 = 1 , 𝜒𝑙𝑙 = 4 , molar masses 1 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 ) with initially 

homogeneous composition. The mobility 𝛬11  is assumed to be constant and equal to the 

diffusion coefficient, 𝛬11 = 𝐷 = 10−11 𝑚2 ∙ 𝑠−1. The homogeneous, constant viscosity 𝜂𝑚𝑖𝑥 

is varied between 10−2 𝑃𝑎 ∙ 𝑠 to 104 𝑃𝑎 ∙ 𝑠 (see Supporting Information S4.1 for more details). 

The chosen parameters can be thought of as representative of an oil mixture. Demixing takes 

place spontaneously due to the concentration fluctuations 𝜁𝐶𝐻  in Equation 9. With typical 

structure sizes in the range 𝐿 = 50 − 500 𝑛𝑚 , the Reynolds numbers remain significantly 

smaller than 1 over the whole viscosity range, which is consistent with the assumption that 

inertial effects can be neglected. The Peclet number 𝑃𝑒 = 𝐿𝑣 𝐷⁄ ≈ 𝐿𝜎 (𝜂𝐷)⁄  ranges 

approximately from 10−2  to 103  which means that diffusion fluxes are dominant at high 

viscosities whereas advection fluxes are dominant at low viscosities. We investigate the 

coarsening behavior of the phase-separated system depending on the viscosity. 

As long as the morphology remains self-similar over time, the coarsening behavior can 

classically be described by the equation 𝐿(𝑡)1/𝛿 − 𝐿0
1/𝛿 ∝ (𝑡 − 𝑡0) where 𝐿0 is the initial size 

of the separated phases, 𝑡0 the time for the onset of demixing and 𝛿 the so-called coarsening 

exponent. Theoretical works have shown that the coarsening exponent 𝛿 is expected to vary 

with decreasing viscosity from 1/3 for a purely diffusive behavior to 1 (in 3D) or 1/2 (in 2D) in 

the viscous regime and 2/3 in the inertial regime, which is not considered here. [124] [125] 

However, Lattice Boltzmann [126] [127] as well as coupled Navier-Stokes-Cahn-Hilliard 

simulations[81] [128] [129] [130] [131] have shown that the coarsening behavior is very complex when 
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both diffusive and advective fluxes are active, with the emergence of distinct length scales, 

break-down of self-similarity, and no simple coarsening kinetics. In the following, we illustrate 

this sophisticated behavior with our results, which are fully in-line with the well-established 

findings of the literature. Note that noise can contribute significantly to the growth mechanism 

and impact the simulated morphologies,[126] [131] but the level of noise used in the calculations 

presented below have been kept sufficiently low so that this effect can be neglected. 

In order to characterize the coarsening behavior, we calculate the 2D structure factor of the 

volume fraction field, the probability distribution 𝑝(𝑞, 𝑡)  of wave numbers q by angular 

integration and define a characteristic length scale as the inverse of the mean q value, 𝐿(𝑡) =

2𝜋 ∫𝑞𝑝(𝑞, 𝑡)𝑑𝑞⁄ . Note that other length scale indicators can be chosen, which behave quite 

differently when self-similarity is not respected, as has been highlighted by Wagner. [126] The 

result of this procedure is shown in Figure 3. For the highest viscosities, the advection fluxes 

are negligible and the coarsening exponent is equal to 1/3 as expected. With decreasing 

viscosities, the coarsening kinetics becomes faster and the apparent coarsening exponent 

increases. However, for the lowest viscosities (below approximately 1 𝑃𝑎 ∙ 𝑠), the coarsening 

exponent exceeds significantly the theoretically expected ½-value at short times and decreases 

strongly with time. [130] This is due to the break-down of self-similarity, and in such cases the 

system cannot be described by a single length scale. As highlighted by Fan and Camley, at 

intermediate viscosity values (3 − 30 𝑃𝑎 ∙ 𝑠 in our case, blue and green curves in Figure 3), an 

‘apparent’ coarsening exponent 𝛿 = 0.5 can be observed, even if the morphology evolution is 

already not self-similar anymore. [130] [131] 

 

Figure 3: characteristic length scale L(t) depending on time for various viscosities. The dashed 

lines show 1/3, 1/2 and 2/3 asymptotic behaviors. The box size is 2048 nm x 2048 nm. 
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The evolution of the morphology for different viscosities is illustrated in Figure 4. The structure 

is perfectly self-similar at high viscosities ( 𝜂𝑚𝑖𝑥 = 10
4 𝑃𝑎 ∙ 𝑠 , Figure 4a-c), with a co-

continuous structure of both phases with few droplet-like inclusions and well-defined thin 

interfaces. For this condition, advection is negligible. This corresponds to the classical behavior 

obtained with the Cahn-Hilliard(-Cook) equation for a symmetric blend. However, with 

decreasing viscosity, the advection plays an increasing role which leads to deviations from the 

purely diffusive behavior. For 𝜂𝑚𝑖𝑥 = 1 𝑃𝑎 ∙ 𝑠, the break-down of self-similarity can be clearly 

observed from the presence of smaller droplets in the larger structures, leading to a variety of 

length scales (Figure 4d-f). There is no clear scaling behavior when this effect occurs.[127] [130] 

There, in addition to the diffusion process, the hydrodynamic flow promotes the reduction of 

interface length and therefore the coarsening, at least until the domains are nearly circular. The 

circular shape is obtained faster for smaller domains. Then, the coarsening of these small 

domains is not assisted by the hydrodynamic flow anymore and they coarsen slower than the 

large domains, which leads to a morphology with small spherical inclusions in the large 

domains. [126] Still, these droplets occasionally merge through the diffusion-enhanced collision 

mechanism (Figure 4f). [126] [131] At even lower viscosity, the diffusive fluxes, which are 

responsible for phase separation, are not fast enough to promote and/or maintain the 

compositional equilibrium (Figure 4g-i). The concentration gradients at the interfaces are 

smoother at the beginning of the LLPS, and the volume fractions in the separated phases hardly 

reach the equilibrium values with time. This leads to a secondary phase separation process, 

initially identified by Tanaka, that takes place inside the phase separated domain, because the 

concentrations there are still in the unstable domain of the phase diagram. [128] [129] 
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Figure 4: snapshots showing the volume fraction of the first fluid, at different stages of the 

coarsening, for 𝜂𝑚𝑖𝑥 = 104, 1, 10−2 𝑃𝑎 ∙ 𝑠 (from top to bottom). The snapshots correspond to 

a measured characteristic length L(t) of 70, 150, 350 nm (from left to right). The smallest 

droplets (R < 15 nm) observed in the last snapshot (i) for 𝜂𝑚𝑖𝑥 = 10−2 𝑃𝑎 ∙ 𝑠 are formed by 

secondary phase separation. 
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4.2. Coupling of the stochastic Allen-Cahn and Cahn-Hilliard equation: 

crystallization in a blend 

Nucleation, growth and coarsening of a pure material 

First, we provide some insights in the general behavior of the stochastic Allen-Cahn equation 

for a pure material (Figure 5). The parameters of the simulations can be found in Supporting 

Information S4.2. Thanks to the fluctuations, the order parameter can overcome locally the 

energy barrier for nucleation (see first term of the RHS in Equation 3), which leads to the 

formation of a crystal, defined as an area with an order parameter above 𝑡𝜙,𝑘, and which is given 

a random, uniform marker value 𝜃 . The order parameter quickly increases to 𝜉0,𝑘 .With 

increasing time, several nuclei appear, grow and impinge, which results in an increasing overall 

crystallinity as shown in Figure 5. 

 

Figure 5: order parameter field at different stages of the crystallization process for 𝑊𝑓𝑢𝑠 =

7.5 ∙ 104 𝐽 ∙ 𝑘𝑔−1 and 𝜀 = 10−5 (𝐽 ∙ 𝑚−1)0.5. (a) During nucleation for a crystallinity of 50%, 

(b) fully crystalline system at the beginning of the coarsening and (c) later stage during 

coarsening. Shown is a 256 nm x 256 nm area of the 512 nm x 512 nm simulation box. 

The time-dependent crystallinity 𝜒(𝑡) can be described by the Johnson-Mehl-Avrami equation 

𝜒(𝑡) = 𝜒𝑚𝑎𝑥(1 − 𝑒
−𝐾(𝑡−𝑡𝑖)

𝑛
), where 𝜒𝑚𝑎𝑥 is the maximum crystallinity and 𝑡𝑖 the incubation 

time for the onset of nucleation. In 2D, the exponent is expected to be 𝑛 = 2 for pure growth, 

while 𝑛 = 3 is expected for if homogeneous nucleation and growth occur at the same time. This 

behavior is recovered in the stochastic Allen-Cahn model. [132] Thereby, 𝜒𝑚𝑎𝑥 is assumed to be 

the crystallinity reached as soon as the system is fully covered by crystallites and grain 

boundaries: at this point, there is no amorphous material anymore. This is illustrated for some 
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sets of parameters in Figure 6a. Once the system is fully crystallized at 𝑡 = 𝑡0, the crystallites 

coarsen with a power law 𝑅(𝑡)2 − 𝑅0
2 ∝ (𝑡 − 𝑡0), as expected for purely surface directed 

growth (Figure 6b).[133] [134] [135] 

       

Figure 6: Evolution of (a) the proportion of crystalline material and (b) average radius of the 

crystallites for various model parameters, as well as fits with the Johnson-Mehl-Avrami 

equation and quadratic grain growth, respectively. 𝑊𝑓𝑢𝑠 is in 𝐽 ∙ 𝑘𝑔−1 and 𝜀 in (𝐽 ∙ 𝑚−1)0.5. 

The full parameter sets can be found in Supporting Information S4.2 

Nucleation, growth and coarsening in a mixture 

The situation in a blend is more complicated, because the nucleation and growth rates are 

strongly composition-dependent. It is not in the scope of this paper to extensively describe how 

the nucleation and growth rates depend on all the thermodynamic and kinetic properties of the 

system. For a general understanding, it is here sufficient to keep in mind that the nucleation rate 

of a material k can be written as the product of three terms: 

1

𝑡𝑛𝑢𝑐𝑙
∝ 𝑀𝑘({𝜑𝑘})𝐴(𝐻𝑘)𝑒

−
∆𝐺∗

𝑅𝑇  (30) 

In the equation above, 𝑡𝑛𝑢𝑐𝑙 is the mean formation time of a nucleus, 𝐻𝑘 is the height of the 

energy barrier for the liquid-solid transformation (see first term of the RHS in Equation 3) and 

∆𝐺∗ is the energy of a critical nucleus. The product of both first terms gives the frequency at 

which a local fluctuation of the order parameter may overcome the energy barrier upon 

crystallization. The first one is a purely kinetic factor related to the mobility of the 

atoms/molecules in the mixture and is assumed here to be proportional to the Allen-Cahn 

mobility (and therefore to the self-diffusion coefficient). The second one is related to the 

probability of a fluctuation overcoming the energy barrier and depends only on the height of 

the barrier and thus on the thermodynamic properties of the blend. The last term is a purely 

thermodynamic factor. This is the energy barrier to be overcome for the formation of a stable 
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nucleus, ∆𝐺∗  being the energy of the critical germ for which the energy gain upon 

crystallization balances the surface energy. In a mixture containing one crystalline material 

(which we will call ‘solute’ here because we focus on crystallization in a solution), the last two 

terms contribute to a considerable decrease (orders of magnitudes) of the nucleation rate with 

decreasing solute concentration. In a solution, since the mobility gets significantly higher upon 

dilution, this is balanced by the fact that the first term strongly increases with decreasing solute 

concentration. As a consequence, and depending on the relative weight of these factors, the 

nucleation rate in a solution might typically have a maximum at intermediate concentrations. 

The same holds for the crystal growth rate, the effect of increasing mobilities upon dilution 

being balanced by the decreasing thermodynamic driving force for phase change. This results 

in the typical behavior shown in Figure 7 depicting the crystallization kinetics of a polymer in 

solution (the parameters of the simulation can be found in Supporting Information S4.3) for 

different polymer volume fractions 𝜑0. The crystallization properties of the polymer are the 

same as for the blue curves in Figure 6. The diffusion coefficient of the polymer and therefore 

the Allen-Cahn mobility is assumed to vary over five orders of magnitude from the pure 

polymer to infinite dilution. This is the dominant effect for concentrations ranging from 𝜑0 =

0.9 to roughly 𝜑0 = 0.2, so that the nucleation rate increases with decreasing polymer volume 

fractions. For 𝜑0 ≲ 0.15, the two thermodynamic contributions become dominant, and the 

nucleation rate abruptly drops. No nucleation can be observed any more during the simulated 

time. 

 

Figure 7: evolution of the proportion of crystalline material in a solute-solvent blend with time, 

for various initial solute volume fractions 𝜑. The crystallinity is defined as the total volume of 

crystalline solute over the whole system volume. 

Nucleus build-up 
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From a physical point of view, the nucleus can be seen as a solid body with a sharp interface, 

namely an infinitely steep composition jump between the mixture outside and the solid inside 

the nucleus. Therefore, in the simulation, it is desired that once the stable nucleus starts to form, 

the order parameter and volume fraction field inside the crystal quickly reach their equilibrium 

values. In our phase field framework, however, the formation of a nucleus is not instantaneous. 

This is in most cases no problem since the crystal build-up is in general very fast. Nevertheless, 

in some ‘pathological’ situations where the concentration dependence of the Allen-Cahn 

mobility is strong, together with a weak driving force for crystallization, the increase of the 

order parameter and of the volume fraction field in the emerging nucleus might get slow as 

compared to the lateral growth of the crystal. This is typically encountered when polymer 

crystallites nucleate in dilute solutions. Here, the Allen-Cahn mobilities strongly decrease in 

the diffuse interface of the forming nucleus, from the outside to the inside. This leads to the 

unacceptable situation that the crystal composition can be significantly different from the 

expected equilibrium value. To overcome this drawback of our diffuse interface model, we first 

evaluate the composition and therefore the Allen-Cahn mobility in the environment directly 

around each emerging nucleus. Then, this Allen-Cahn mobility calculated from the environment 

is used inside the nucleus, whatever the composition, at every grid point where the crystal forms, 

namely 
𝛿∆𝐺𝑉

𝛿𝜙𝑘
< 0 . The nucleus formation following this procedure is shown in Figure 8, 

corresponding to the volume fraction 𝜑0 = 0.3  of Figure 7. The order parameter in the 

emerging nuclei quickly reaches its maximum value and the volume fraction reaches a value 

(0.8) which is higher than the solid concentration (𝜑𝑠 = 0.78 in this case) because the liquid 

part is still very concentrated (Figure 8a). The order parameter and volume fraction fields inside 

the crystals remain homogeneous with further growth (Figure 8b). Upon further crystallization, 

the polymer volume fraction in the liquid phase decreases, the smallest nuclei that might thus 

not be stable any more disappear. This, together with a classical coarsening process, leads to 

the growth of the largest crystals. The volume fraction in the crystals at the end of the simulation 

(0.75) is a little lower than the solid volume fraction due to diffusional limitations in the largest 

crystals, but it is still very close to it. For comparison, the mean volume fraction in the crystals 

without application of the correction described above is strongly inhomogeneous and still 

remains below 0.65 for identical simulation times. Note that the order parameter field is much 

noisier than the volume fraction field. This is because of the location 𝜙𝑏 of the energy barrier 

for solid-liquid phase transformation on the order parameter axis (see first term on the RHS of 

Equation 3). Order parameter fluctuations in the range of 𝜙𝑏 (typically 𝜙𝑏 = 0.1…0.3.) are 
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necessary in order to reach order parameter values with  
𝜕𝛥𝐺𝑉

𝜕𝜙𝑘
< 0 and thus a driving force for 

crystal nucleation. Turning to the volume fraction field, for the onset of LLPS, fluctuations that 

are order of magnitudes smaller are actually sufficient. Moreover, in the miscible blend 

considered here they tend to be smeared out anyway. 

 

Figure 8: solute volume fraction field (top row) and order parameter field (bottom row) at 

different stages of the crystallization process for the initial solute volume fraction  𝜑 = 0.3. (a, 

d) During nucleation for a crystallinity of 15% (half of the solute material is crystalline), (b, e) 

system with nearly fully crystallized solute at the beginning of the coarsening and (c) later stage 

during coarsening. The size of the simulation box is 256 nm x 256 nm. 

4.3. Advection and stability of crystals in a drying film  

Advection in a drying film 

We now investigate the coupling of the full phase-field model, including crystallization and 

evaporation, to the solver for the dynamics of the fluids. First, we focus on a test case regarding 

the advection of a single crystal in a drying film. The simulation setup is as follows (see Figure 
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9a-b): we consider a polymer solution with 30% polymer concentration and a small crystal 

sitting initially close to the top of the film. The crystal has a diameter of 15 grid points and the 

liquid-solid interface thickness is 8 grid points. The solvent evaporates and the film is therefore 

drying. The parameters for the polymer solution and the crystallization properties are the same 

as in the previous section, except that the Allen-Cahn mobility of the crystalline polymer is set 

to zero so that the crystallization process is inactive during the evaporation (the full set of 

simulation parameters can be found in Supporting Information S4.4). In such a situation, we 

expect the film surface to come in contact with the crystal and push it downwards, provided the 

capillary forces between the surface and the crystal are strong enough to compensate for the 

viscous forces arising from the crystal’s displacement. The final result of the simulation is 

shown in Figure 9c-d. As desired, the crystal is advected vertically, without surface area 

modification and with very limited deformation of the order parameter field. This shows that 

the advection works properly, the MUSCL scheme together with the Superbee flux limiter 

ensuring that the crystal’s shape is almost conserved, in particular preventing numerical 

diffusion. 

 

Figure 9: simulation of a drying polymer solution with a single initial crystal. Volume fractions 

and order parameters at the beginning (respectively (a) and (b)) and at the end (respectively 

(c) and (d)) of the simulation. For the volume fraction fields, the polymer is represented in red 

and the solvent in blue. For the order parameter fields, the polymer crystal is represented in 

red and the vapor in blue. The system size is 256 nm x 64 nm. 

Second, we perform the same simulation but with three crystals initially present in the wet film 

(Figure 10). The upper crystals is pushed downwards as soon as it touches the film surface. The 

second crystal also reaches the film surface and is then pushed downwards. Due to 

hydrodynamic interactions, the three crystals finally stick to one another (see the final state in 

Figure 10c-d). Here again, we could check that, despite these complex displacements and the 
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agglomeration process, the surface area of the crystals is conserved and the evolution of the 

interface profiles is very limited. To conclude these advection test cases, we point out a 

limitation of our framework concerning the viscosity. The viscosity values used in our 

simulations are unrealistically high, at least for the regime of very dilute solutions at the 

beginning of the drying. Indeed, using realistic values would lead to high velocities in the 

simulation box, and thus very small admissible time steps due to the Courant-Friederich-Levy 

condition for advection. Simulating realistic evaporation time would require a huge amount of 

time steps and thereafter inaccessible calculation times. The associated underestimation of the 

role of advection in the simulations of dilute solutions has to be kept in mind. 

 

Figure 10: simulation of a drying polymer solution with three initial crystals. Volume fractions 

and order parameters at the beginning (respectively (a) and (b)) and at the end (respectively 

(c) and (d)) of the simulation. For the volume fraction fields, the polymer is represented in red 

and the solvent in blue. For the order parameter fields, the polymer crystal is represented in 

red and the vapor in blue. The system size is 256 nm x 64 nm. 

 

Stability of the crystals at the film surface 

As already explained in Section 2.4, the stability of a crystalline structure touching the film 

surface is a critical issue. This is a consequence of the diffuse nature of the interfaces in the 

phase-field framework, which leads, at the condensed-gas phase interface, to the overlap of the 

air, solvent and solute fraction fields on the one side, and to the overlap of the crystalline and 

vapor order parameters on the other side. Since a substantial overlap of the phase fields is in 

fact energetically very unfavorable, this leads to an evolution of the phase fields in this region. 

If the kinetic properties are such that the diffusion processes and the crystallization/dissolution 

processes are fast in the solid-gas interface, the order parameter and volume fraction fields of 

the crystalline material are reduced in the interface, allowing the vapor phase of the drying film 
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to progress, so that the crystal finally disappear. Such a fast kinetic is typically encountered 

when investigating crystallization processes upon drying in dilute solution, and crystals 

reaching the surface may dissolve during the drying. Moreover, even in the case of well-formed 

crystals in highly concentrated films, the kinetics within the diffuse solid-vapor interface is 

generally fast in the outer region of the crystal, because the solute volume fraction is relatively 

low. This means that even well-formed crystals or dry structures are in principle hardly stable. 

As a consequence, handling crystal nucleation together with ensuring crystal stability in 

simulations of drying films is a complicated issue. To overcome this unphysical effect, we have 

introduced in Section 2.4 an interaction energy between crystals and vapor phases, as well as a 

penalty function for the crystallization kinetics. In the following, we illustrate how this allows 

for stability of crystalline structures at the interface. The simulation setup is shown in Figure 

11. We calculate the evolution of a mixture initially composed of 30% crystalline polymer, 50% 

solvent and 20% additional amorphous small molecule solute. The parameters for the polymer 

and the solvent are the same as in the previous section. The full parameter sets can be found in 

Supporting Information S4.5. Before starting the evaporation, we let a columnar like crystalline 

structure grow in the film. Then, we let the film dry and allow for a fast Allen-Cahn mobility, 

which means that the crystal has time to evolve within the time required for evaporation, and 

we then investigate whether the columnar structure is stable. 

 

Figure 11: drying of a ternary polymer-small molecule-solvent blend, with an initial columnar 

polymer crystal. The volume fractions (a) and order parameters fields (b) during the simulation, 

after impingement of the vapor and the solid, are shown. For the volume fraction fields, the 

polymer is represented in red, the small molecule in green and the solvent in blue. For the order 

parameter fields, the polymer crystal is represented in red and the vapor in blue. The system 

size is 256 nm x 128 nm. 
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Figure 12 shows the position of the top of the columnar crystal depending on time for various 

simulation parameters and illustrates how the instability can be prevented. In a first step, we 

perform simulations only with the phase field model (dashed lines). As detailed above, without 

solid-vapor interaction, as soon as the crystal is in contact with the film surface (𝑡 ≈ 0.2 𝑠), it 

is not stable, even during the evaporation time (roughly 10s) and its maximal height finally 

drops down to 120 nm, which is actually the height of the final flat film (red curve). Introducing 

a solid-vapor interaction energy greatly increases the stability (orange curve), but the columnar 

structure still evolves quickly as compared to the drying time. Only by introducing also a kinetic 

penalty to the evolution of the crystallinity at the solid-vapor interface, the crystal can be made 

perfectly stable (yellow curve). 

 

Figure 12: time-dependent position of the top of the columnar crystalline structure shown in 

Figure 11 for different simulation setups. (red) phase field model only, no SV interaction energy 

(orange) phase field model only with SV interaction energy, (yellow) phase field model only 

with SV interaction energy and penalty to the Allen-Cahn mobility in the SV interface, (blue) 

phase field coupled to fluid mechanics, low viscosity in the SV interface, (green) phase field 

coupled to fluid mechanics, high viscosity in the SV interface 

In a second step, we couple the phase-field model (including solid-vapor interaction and kinetic 

penalty in the SV interface) to the mass and momentum conservation equations. The columnar 

structure turns out to be instable (blue curve), which highlights a second potential instability 

mechanism: again due to the diffuse nature of the SV interface, the viscosity values at the very 

top of the crystal are low, so that the velocity field is non zero. Advection takes place at the 

crystal border with a significant negative vertical component, which leads to the disappearance 

of the crystalline region at the surface. This can happen even if the crystal is set on the substrate 

and even if the viscosity inside the crystal is very high and therefore the velocities in the bulk 

negligible. To prevent this, the grid points in the SV interface corresponding to the whole crystal 
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diffuse interface need to have a high viscosity. In practice, we set the centering 𝑐𝜂  of the 

viscosity penalty function inside the crystals (see Equation 22) in such a way that the viscosity 

drops over orders of magnitude as soon as the crystal detection limit is passed. In addition, the 

viscosity of the grid points in the SV interface around the crystal (2-4 points beyond the area 

where the marker value is defined) is also set to the bulk value. Using this procedure, the 

stability of the crystal with the full model can be ensured (green curve), which is crucial for 

applications where the roughness of the dry film has to be investigated. This is for example the 

case for solution-processed perovskite photoactive layers for solar cells or other optoelectronic 

applications. Finally, note that with the noise term in our phase-field equations, the phase fields, 

and especially the crystalline order parameter fields, can be very noisy. The same holds for the 

viscosity field, whereby abrupt viscosity changes can be found in the crystal interfaces. In order 

to be able to handle these fields numerically, they are smoothed with two successive Gaussian 

filters before calculating the capillary forces and the velocity fields. The calculated velocity 

fields are therefore only approximate solutions of the problem. Fortunately, this does not affect 

the global physics of the structuring film: in fact, the simulations of crystal advection presented 

above have been performed with this filtering, and it has been shown that the expected behavior 

can be recovered. 

To conclude this section, two important points related to the stability need to be pointed out. 

First, remember that the phase field equations lead to the minimization of the energy of the 

system. This means that the interface area has to be reduced, and that the thermodynamically 

stable final structure in the example above is a flat dry film anyway. Nevertheless, the kinetics 

of this flattening is virtually infinitely slow due to the vanishing transport properties of the 

crystal. In our simulations, we make sure that the crystals are stable over time scales at least 

comparable with the drying time. Second, the instability of floating crystals at the surface of the 

drying film can be prevented with the same procedure. Note that the instability mechanism 

discussed here has nothing to do with the thermodynamic instability of a small germ (r<r*) or 

with the suppression of the smallest crystals due to coarsening. Indeed, this is an instability 

mechanism due to the diffuse nature of the interfaces. The stability of emerging nuclei floating 

at the surface strongly depends on the SV interaction energy and of the penalty to the Allen-

Cahn mobility, notably whether the phase fields inside the crystals is such that 𝜑𝑘𝜙𝑘 > 𝑐𝑠𝑣. In 

other words, nuclei with 𝜑𝑘𝜙𝑘 < 𝑐𝑠𝑣 are unstable and disappear at the film surface while nuclei 

with 𝜑𝑘𝜙𝑘 > 𝑐𝑠𝑣 are stable and tend to gather at the film surface. This leads to the fact that the 

overall vertical location of the emerging crystals in the drying film not only depend on the 
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physics, but also on purely numerical, somewhat arbitrary parameters. Therefore, conclusions 

on the vertical position of crystalline structures have to be handled very cautiously.  
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5. Simulations of film structuration upon drying 

In this section, we present simulations performed with the full model for the case of a drying 

thin film. The mixture is a ternary polymer-small molecule-solvent blend, initially perfectly 

mixed with either 13:20:67 or 20:13:67 volume fraction ratio (polymer-small molecule blend 

ratio 40:60 or 60:40). Both polymer and small molecule materials are crystalline and are 

immiscible. We investigate the evaporation-induced morphology formation until the film is dry. 

In such a sophisticated mixture, many morphology formation pathways are in principle 

possible, depending on the material properties and on the process parameters. It is not the topic 

of this paper to systematically investigate and understand which material properties and 

processing conditions lead to which morphologies. Instead, we simply illustrate a couple of 

different morphology formation processes and dry structures, but still in the ‘most complex 

situation’ where LLPS as well as crystallization of both materials can occur. The objective is to 

demonstrate that our numerical method can handle such cases. Again, the parameters are the 

same as compared to the previous section, except that the blend ratio, the Allen-Cahn mobility 

(and thus the crystallization kinetics) of both polymer and small molecule, and the polymer-

small-molecule Flory-Huggins interaction parameter are varied. The full parameter sets can be 

found in Supporting Information S4.6. The simulation box is 512 nm x 256 nm and the initial 

film height is 450 nm. 

Figure 13 shows the morphology formation upon drying for a highly incompatible 40:60 

polymer-small molecule blend. In this example, a liquid-liquid phase separation occurs first as 

the ternary mixture reaches the unstable region of the phase diagram (Figure 13a, e). Then, 

polymer crystals form in the polymer majority phase (Figure 13b, f). Upon further drying, both 

polymer and small molecule phases become more pure and the crystallization process 

progresses, with purification of the crystals and coarsening (Figure 13c-d, f-h). The crystals at 

the film surface are pushed downwards (Figure 13b-d, e-h). After 3s of drying, the film surface 

hits a hardly deformable crystal structure connected to the substrate and starts to bend (Figure 

13c, g). With further drying, the whole solvent finally evaporates, some re-organization of the 

crystalline morphology occurs due to coarsening and residual advection, but the dry structure 

remains rough (Figure 13d, h). The crystallization of the small molecule material is very limited 

here during drying because the critical concentration for nucleation is high (for 40% volume 

fraction) and at such a concentration the crystallization kinetics is slow. The dry structure can 

be seen as a quasi ‘two phase system’ with a purely crystalline polymer phase and a purely 

amorphous small molecule phase. Nevertheless, it is important to keep in mind that the 
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morphology at the end of the drying is not at thermodynamic equilibrium. Therefore, it still 

evolves with further crystallization of both materials. However, this happens at much longer 

time scales, because in the solvent-free system all kinetic properties are slower. In this case, 

very limited changes have been observed between 10s and 30s simulation time. 

 

Figure 13: drying of a ternary polymer-small molecule-solvent blend. The initial blend ratio is 

13:20:67, the Allen-Cahn mobilities for the polymer and the small molecule are respectively 

𝑀𝑝,0 = 1.5 ∙ 10−5 𝑠−1  and 𝑀𝑠𝑚,0 = 8 ∙ 10−5 𝑠−1 , and the polymer-small molecule Flory-

Huggins interaction parameter 𝜒𝑙𝑙,𝑝𝑠𝑚 = 2. The volume fractions (top row, (a-d)) and order 

parameter fields (bottom row, (e-h)) are shown after 1s, 2s, 3s, and 10s of drying (from left to 

right). The film is completely dry after 7s (Figure 14). For the volume fraction fields, the 

polymer is represented in red, the small molecule in green and the solvent in blue. For the order 

parameter fields, the polymer crystals are represented in red, the small molecule crystals in 

green and the vapor in blue. The system size is 512 nm x 256 nm. 
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By only varying slightly the blend ratio, the kinetic or thermodynamic properties of the mixture, 

very different formation pathways and morphologies can be obtained. The time-dependent film 

height for all the simulations in this section are shown in Figure 14 and the final morphologies 

in Figure 15.  

 

Figure 14: normalized time-dependent film height the simulations presented in Figure 13 and 

Figure 15. h is the mean film height and h0 the initial film height. 

In the case of an increased miscibility of the polymer and the small molecule materials, the 

crystallization process starts before the spinodal decomposition and is responsible for the phase 

separation (Figure 15a-c and e-g). A slow crystallization process for both polymer and small 

molecule materials (Figure 15a, e) leads to a quasi ‘3 phase structure’ with an amorphous, 

impure small molecule phase, an impure amorphous polymer phase and pure polymer crystals. 

A slightly faster crystallization process for the polymer (Figure 15b, d) leads to a quasi ‘2 phase 

structure’ with a purely amorphous small molecule phase, and pure polymer crystals, like in the 

example above. However, polymer crystals gather at the surface and solvent is trapped below 

this crystalline layer, so that the evaporation process nearly stops, even if it is not completely 

blocked (Figure 14). The significant difference between both simulations can be explained by 

a tipping point in the competition between the crystallization and the drying process. The 

solvent removal contributes to the increase of solute volume fraction in the amorphous phase, 

whereas the crystals take over materials from the amorphous phase. If the crystallization is too 

slow (Figure 15a, e), the mean polymer concentration in the amorphous phase increases, which 

in turn slows down the crystallization (dominant kinetic factor in Equation 30). If the 

crystallization is faster (Figure 15b, f), the mean polymer concentration in the amorphous phase 

decreases, which in turn dramatically accelerates the crystallization. The polymer volume 

fraction then quickly reaches the liquidus value. A slow crystallization process for the polymer 

and a fast crystallization process for the small molecule materials (Figure 15c, g) leads to a 
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quasi ‘4 phase structure’ with impure amorphous polymer and small molecule phases, and pure 

polymer and small molecule crystals. Finally, going back to a highly immiscible 40:60 system, 

but with slower polymer crystallization as compared to the case of Figure 13, we can obtain 

again a quasi ‘3 phase structure’ with an amorphous small molecule phase, an impure 

amorphous polymer phase and pure polymer crystals (Figure 15d, h). In comparison to Figure 

15a, e, however, the small molecule phase is significantly more pure. This is because the phase 

separation process is triggered by spinodal decomposition before the onset of crystallization. 

 

Figure 15: morphology of a ternary polymer-small molecule-solvent blend after 10s drying 

time. The volume fraction (top row, (a-d)) and order parameter fields (bottom row, (e-h)) are 

shown for different parameter sets corresponding to Figure 14. (a, e) blend ratio 60:40, 𝑀𝑝,0 =

1.2 ∙ 10−5 𝑠−1 and 𝑀𝑠𝑚,0 = 8 ∙ 10
−5 𝑠−1, 𝜒𝑙𝑙,𝑝𝑠𝑚 = 0.8 (b, f) blend ratio 60:40, 𝑀𝑝,0 = 1.5 ∙

10−5 𝑠−1  and 𝑀𝑠𝑚,0 = 8 ∙ 10−5 𝑠−1 , 𝜒𝑙𝑙,𝑝𝑠𝑚 = 0.8  (c, g) blend ratio 60:40, 𝑀𝑝,0 = 0.8 ∙

10−5 𝑠−1  and 𝑀𝑠𝑚,0 = 40 ∙ 10−5 𝑠−1 , 𝜒𝑙𝑙,𝑝𝑠𝑚 = 0.8  (d, h) blend ratio 40:60, 𝑀𝑝,0 = 1.2 ∙

10−5 𝑠−1 and 𝑀𝑠𝑚,0 = 8 ∙ 10−5 𝑠−1, 𝜒𝑙𝑙,𝑝𝑠𝑚 = 2. The volume fraction field of the polymer is 
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represented in red, the one of the small molecule in green and the one of the solvent in blue. 

For the order parameter field of the the polymer crystals is represented in red, the one of the 

small molecule crystals in green and the one of the vapor in blue. The system size is 512 nm x 

256 nm. 

These examples show that even slight variations of the material parameters can lead to 

completely different morphology formation pathways and final structures. They also 

demonstrate the ability of the code to handle this miscellaneous physics with morphologically 

complex structures. In particular, in these sophisticated simulations, nucleation, growth, 

impingement, advection and stability at the film surface of the crystals and liquid-liquid phase 

separation work correctly as expected from the benchmark tests presented in the previous 

section. Finally, only an approximate and qualitative description of the morphologies has been 

given here. Even if it is not in the scope of the present paper, a precise qualitative analysis of 

the morphologies (in terms of composition, crystallinity, domain sizes, spatial organization…) 

is straightforward and shall be systematically performed in the near future. 
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6. Conclusion and perspectives 

In this paper, we developed a coupled phase field-fluid mechanics simulation framework for 

the investigation of evaporation-induced morphology formation in multicomponent drying 

films. Using the Cahn-Hilliard-Cook, the stochastic Allen-Cahn, as well as the mass 

conservation and momentum conservation equations, physical processes like evaporation, 

liquid-liquid phase separation and coarsening, crystal nucleation, growth and coarsening in 

polycrystalline materials can be taken into account. Mass transport occurs by diffusion and 

advection. The simulation tool can handle any number of materials in the mixture. The 

implementation is based on a finite volume / finite difference discretization and uses advanced 

implicit time stepping methods and parallel computing based on the message passing protocol 

(MPI). It enables the handling of the different physical processes even if they occur on very 

different time scales. Even though only 2D simulations are presented in this paper, the code is 

implemented in 3D and can thus handle fully three dimensional systems as well. The basic 

working principles of the theoretical framework, results on benchmark tests, and the basic 

behavior in various cases (spinodal decomposition, crystallization in pure materials and 

mixtures, drying films with existing crystals) were presented. Finally, we presented some 

examples of the evaporation-induced structure formation in a sophisticated ternary polymer-

small molecule-solvent mixture, whereby both polymers are crystalline and immiscible. 

Thereby, we showed that the simulation tool can handle various morphology formation 

pathways, and very different structures have been obtained. 

The simulation tool is designed in a flexible way, so that the whole physics, or only part of it, 

can be taken into account. This can be recognized from the variety of simulations presented in 

the present work and renders our theoretical framework applicable not only for various material 

systems or applications, but also for various processing and solicitation conditions (solutions at 

fixed composition, solutions under flow, drying films, solvent vapor annealing, thermal 

annealing or ageing in dry systems…). We emphasize that the proposed framework should not 

be considered just as a toy model working in a parameter space that would not be accessible for 

real experiments. On the contrary, the model can also be used in a parameter window that is in 

line with realistic experimental values, as demonstrated in the present paper: in fact, the values 

that have been given to the various physical parameters can be thought of as representative of 

a real polymer-small molecule-solvent mixture. As pointed out above, the only major exception 

to this is the viscosity. 
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Thus, the model can be used not only to perform systematic studies on the material-process-

structure relationship, but also to compare simulation results with measurements on real 

systems. Of course, the values of the parameters as well as their dependency on the composition 

should be discussed in much more detail and refined, and this will be the topic of future work. 

Therefore, we hope that this simulation tool can produce results that will be at least qualitatively 

comparable with experimental results. However, a precise quantitative match is probably out of 

reach, due to several limitations. First, as usual in phase-field or other diffuse interface 

simulation frameworks, the thickness of the interfaces is significantly larger than in the real 

world. Second, the viscosities accessible for reasonable calculation times, are, at least for 

realistic simulations of drying dilute solutions, orders of magnitude higher than the real values. 

Thus, the impact of convective fluxes on the film morphology formation might be 

underestimated in such situations. Third, it has been already highlighted above that some purely 

numerical parameters may quantitatively influence the crystallization process, especially in 

drying films. 

Although one should therefore handle quantitative results with caution, we believe that this 

framework opens the way to a vast horizon of investigations on the morphology of sophisticated 

multicomponent, crystalline systems, thus fulfilling the objectives detailed in the introduction 

of this paper. The interaction between evaporation, miscibility in the amorphous state and 

crystallization of each material can be studied, depending on the thermodynamic and kinetic 

properties, and on the time and length scale of each physical process. This allows in principle 

to systematically sort out, analyze and characterize the different possible structure formation 

pathways and the various associated final morphologies, and hopefully to make predictions for 

given material systems processed in specific conditions. At the end, the overarching goal is to 

help gaining control on the process-structure relationship. 

The physics taken into account in the phase-field framework can be extended. On a short term 

perspective, specific interactions between the substrate and the various materials will be 

implemented following ideas already described in the literature. [62] [67] [85], as well as strongly 

anisotropic crystal growth. [56] [136] [137] On a longer term perspective, we plan to take stochastic 

fluctuations in the momentum conservation equation into account, so as to handle crystal 

diffusion, which might be an important physical process for nanometer sized particles in dilute 

solutions. 

Furthermore, a major research topic in the near future will be the investigation of real systems. 

Our approach will be applied in the field of solution processed solar cells, in particular for 
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understanding the formation and morphological stability of bulk heterojunctions in organic 

photoactive layers, and of polycrystalline perovskite layers in perovskite solar cells. Beyond 

the progress on the simulation side, additional challenges will be the proper measurement of the 

material parameters, in particular their composition dependency and their mapping onto 

simulation parameters. The framework will be validated by comparing the simulation results 

with the accurate experimental characterizations of the morphology. This requires not only 

advanced, multi-technique in-situ characterizations, but also the development of quantitative 

morphology analysis tools for the simulated structures. Then, the simulation framework will be 

used thoroughly to unravel the possible structure formation pathways in these systems and 

propose improved processing conditions. 

Finally, we believe that our framework could also be advantageously applied to many other 

material systems, notably drying thin or thick films, as soon as the morphology formation 

process involves liquid-liquid or liquid-solid phase transformations. 
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TOC figure 

We develop a coupled phase-field-fluid dynamics framework in order to simulate the 

morphology formation of multicomponent crystalline thin films upon drying. The behavior of 

the coupled model is verified. Simulations of the morphology formation in a ternary drying film 

undergoing evaporation-induced LLPS and crystallization are presented for various structure 

formation pathways, depending on the mixture thermodynamic and kinetic properties. 
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